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Abstract—Crowdsourcing has emerged as an effective platform
to label data with low cost by using non-expert workers. However,
inferring correct labels from multiple noisy answers on data has
been a challenging problem, since the quality of answers varies
widely across tasks and workers. Many existing prior works
have assumed a simple model where the order of workers in
terms of their reliabilities is fixed across tasks, and focused on
estimating the worker reliabilities to aggregate responses with
different weights. We propose a highly general crowdsourcing
model in which the reliability of each worker can vary depending
on the type of a given task, where the number of types d can scale
in the number of tasks. In this model, we characterize the optimal
sample complexity to correctly infer the unknown labels within
any given accuracy, and propose an algorithm achieving the
order-wise optimal result. We conduct experiments on synthetic
and real datasets, and show that our algorithm outperforms the
existing ones developed based on strict model assumptions. 1

I. INTRODUCTION

Crowdsourcing systems have allowed us to collect a large
amount of useful data by assigning tasks to human workers, re-
questing them to provide responses to these tasks, and offering
them compensations in monetary terms. The main goal of tasks
in crowdsourcing lies in the reliable estimation of the unknown
ground-truth labels, so-called the crowdsourced labeling. Low-
cost human workers are often non-experts and this issue may
lead to the necessity to ask redundant questions and to collect
multiple answers for each task with a heterogeneity in the
quality of answers across workers and tasks. Thus, it has been
a challenging problem to infer the ground-truth labels from
multiple noisy responses while minimizing total queries.

Many existing works have adopted simple yet meaningful
model assumptions to analyze and improve the sample ef-
ficiency. In the Dawid-Skene model [6], which is the most
extensively studied model in this line of work, the worker
reliability is assumed to be fixed across all tasks, and various
inference algorithms have been proposed to better estimate the
worker reliabilities and to infer the true labels by combining
the responses with proper weights via statistical aggregation
rules, based on the expectation-maximization (EM) algorithm
[6], [8], message-passing [10], [16], [19], [17], [12], spectral
methods [22], [5], [9], and gradient descent methods [18].

1This research was supported by the National Research Foundation of
Korea under grant 2021R1C1C11008539, and by the Ministry of Science
and ICT, South Korea, under the ITRC support program grant IITP-2022-
2018-0-01402, and under the Institute of Information and Communications
Technology Planning & Evaluation (IITP) grant No.2020-0-00626.

In some recent works [11], [21], [4], task difficulties are
additionally considered in modeling the fidelity of responses.
However, all these works are based on strict assumptions
that each worker is either associated with its own reliability
parameter, fixed across all tasks, or the order of workers in
terms of their reliabilities does not change depending on tasks.

In this paper, we propose a general model that better
represents real-world data, especially when the tasks are
heterogeneous and the worker reliability can vary with a given
task type. Specifically, we assume that each worker and task
has its own type among [d] := {1, . . . , d}, and the reliability of
a worker may change by the task type and worker type. Under
this general model, the worker reliabilities can be completely
changed for each task, and the main questions are how to
estimate the types of tasks and workers, and how to choose
proper weights for answers from each worker depending on
the task type and worker type, where neither the task types nor
the worker types are known. We consider a high-dimensional
regime where the number d of types can scale in the number
of tasks, and the framework we develop is non-asymptotic.

We first fully characterize the optimal sample complexity
to infer the correct labels with any target accuracy, and then
design an inference algorithm achieving the order-wise optimal
sample complexity. To further demonstrate the benefits of
our model and the proposed algorithm in real applications,
we present experimental results both on synthetic and real
datasets and show that our algorithm outperforms the existing
baselines that are mainly developed based on the strict model
assumptions on consistent worker reliabilities across all tasks.

The proofs of our results are available at full version [14].

II. MODEL AND PROBLEM FORMULATION

Let m and n be the number of tasks and workers, respec-
tively. Let a ∈ {±1}m denote the vector of unknown binary
labels associated with these tasks, and A ⊆ [m] × [n] be the
worker-task assignment set, i.e., (i, j) ∈ A if and only if the
i-th task is assigned to the j-th worker.

The crowdsourcing system with a fidelity matrix F ∈
[0, 1]

m×n is an observation model, which samples a data
(Mij : (i, j) ∈ [m]× [n]) ∈ {−1, 0,+1}m×n according to the
following rule: Mij = 0 if (i, j) ∈ ([m]× [n]) \ A, and

Mij =

{
ai with probability Fij ;
−ai with probability 1− Fij .

(1)
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We further assume the independence of the aggregation of
noisy answers {Mij : (i, j) ∈ A}.

In previous models, it is often assumed that the worker
reliability is fixed across tasks. In single-coin Dawid-Skene
(DS) model [6], each worker is associated with a reliability
parameter rj and Fij = rj for i ∈ [m]. In some recent works,
task difficulties are additionally considered in modeling F. In
[11], the task difficulty is quantified by ci ∈ [1/2, 1], which
is the probability that a task is perceived correctly, and the
fidelity matrix is modeled by Fij = cirj + (1− ci) (1− rj).
In [21], a permutation-based model is considered, where there
is a fixed order of workers in terms of their reliabilities
that does not change for tasks, and a fixed order of task
difficulties, perceived equally by all workers. For all such
models, however, the order of workers in terms of their
reliabilities is still assumed to be fixed for all tasks.

We introduce a highly general model, termed by the d-type
specialization model, where each worker and task is associated
with a certain type in [d] and the value of Fij is determined
by the type of i-th task and the type of j-th worker. Since
it is natural to assume that worker types and task types are
unknown at the crowdsourcing system, we assume that those
types are independently and uniformly distributed over [d].
For the d-type specialization model with a reliability matrix
Q(·, ·) : [d]× [d]→

[
1
2 , 1
]
, denoted by SM(d;Q), the fidelity

matrix F is not deterministic but stochastic with the following
prior distribution of F over

[
1
2 , 1
]m×n

:
1) A task-type vector t = (ti : i ∈ [m]) and a worker-type

vector w = (wj : j ∈ [n]) are drawn independently and
uniformly over [d]m and [d]n, resp.;

2) The value of Fij is completely determined by the pair of
the i-th task type and the j-th worker type (ti, wj): for
each (i, j) ∈ [m]× [n], Fij = Q (ti, wj).

In this model, the order of workers in terms of their reliabilities
may vary depending on the task type. The d-type specialization
model was first studied in [20], but with a restrictive assump-
tion: Q (t, w) = p > 1/2 if t = w; Q (t, w) = 1/2 otherwise,
i.e., the workers give answers with fidelity better than random
guess only when the worker type and the task type match.
We extend this model by allowing any Q satisfying only two
assumptions below.

Assumption 1 (Weak assortativity of Q). Let p∗(t) := Q(t, t)
and q∗(t) := maxw∈[d]\{t}Q(t, w) be the matched reliability
and the maximum mismatched reliability for the task type t ∈
[d]. Then, we have p∗(t) > q∗(t), ∀t ∈ [d].

Assumption 2 (The strong assortativity of Φ(Q)). We de-
fine Φ(Q)(a, b) := 1

d

∑d
t=1 {2Q(t, a)− 1} {2Q(t, b)− 1} for

(a, b) ∈ [d] × [d], and call Φ(Q) : [d] × [d] → [0, 1] the
collective quality correlation matrix. Also, we define pm :=
mina∈[d] Φ(Q)(a, a) and pu := maxa6=b Φ(Q)(a, b) : a 6= b
denote the minimum intra-cluster collective quality correlation
and the maximum inter-cluster collective quality correlation,
respectively. Then, we have pm > pu.

Assumption 1 implies that the workers whose types match

the type of a given task respond more reliably than the
workers of other types. In Assumption 2, the diagonal entry
Φ(Q)(a, a) represents the average quality of the type-a worker
cluster in answering over all task types. The off-diagonal entry
Φ(Q)(a, b), where a 6= b, represents the quality correlation
between the type-a and the type-b clusters of workers over
all task types. Assumption 2 asserts that the collective quality
correlation between any two workers of the same type is higher
than that of any two workers of different types.

We measure the quality of an estimator â(·) : {±1}A →
{±1}m by the expected fraction of labels that do not match
with the ground-truth: R (a, â) := 1

m

∑m
i=1 P {âi(M) 6= ai}.

The main question is to find the minimal number of queries
per task, |A|/m, required to obtain the recovery performance

R (a, â) =
1

m

m∑
i=1

P {âi(M) 6= ai} ≤ α, (2)

for an arbitrarily given target accuracy α ∈ (0, 1).

III. PERFORMANCE BASELINES

A. Baseline estimators

Throughout this section, we review some baseline estimators
and analyze their performance under the proposed model.

1) Weighted majority voting rule: A weighted majority vot-
ing infers the ground-truth label by aggregating the responses
for the i-th task with weights {θij : j ∈ A(i)}: âWMV

i :=

sign
(∑

j∈A(i) θijMij

)
, where A(i) := {j ∈ [n] : (i, j) ∈ A}

denotes the set of workers assigned to the i-th task.
2) Maximum likelihood (ML) estimator: The ML estimator

takes the weight θij = log
(

Fij
1−Fij

)
on Mij : for each i ∈ [m],

âML
i = sign

 ∑
j∈A(i)

log

(
Fij

1− Fij

)
Mij

 . (3)

The ML estimator (3) requires the knowledge of the fidelity
matrix F a priori, which is impossible in practice.

3) Standard majority voting (MV) rule: The majority voting
rule takes weight θij = 1 for all j ∈ A(i):

âMV
i := sign

 ∑
j∈A(i)

Mij

 , ∀i ∈ [m]. (4)

Proposition III.1 (Statistical analysis of the majority voting).
In the d-type worker-task specialization model SM (d;Q), it is
possible to achieve the recovery accuracy (2) via the majority
voting rule (4) with the average number of queries per task

|A|
m
≥ 1

mint∈[d] θ1(t;Q)
log

(
1

α

)
(5)

for any given target accuracy α ∈
(
0, 12
]

(α may depend on

m), where θ1(t;Q) := 1
2

[
1
d

∑d
w=1 {2Q(t, w)− 1}

]2
.
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4) Type-dependent subset-selection (SS) scheme: The last
baseline is the type-dependent subset-selection scheme [20].
The idea is to exploit the answers from the workers whose
type matches the given task only. Since neither task types nor
worker types are known, the main task is to estimate the task
type t̂i and infer the set of workers among A(i) whose type
matches t̂i, denoted by At̂i(i). Then, ai is estimated by MV
using responses from the workers of the matched type only:

âSS
i := sign

 ∑
j∈At̂i (i)

Mij

 , ∀i ∈ [m]. (6)

The basic idea to infer At̂i(i) in [20] is to first cluster workers
by sequentially comparing the similarity on responses between
every pair of workers, and then find a cluster whose answers
for the given task are the most biased.

Proposition III.2 (Statistical analysis of the SS scheme). In
the d-type specialization model SM(d;Q), with Q satisfying
Assumption 1 and 2, the SS scheme achieves (2) provided that

|A|
m
≥ min

 4d · log
(
6d+3
α

)
mint∈[d]

{
(p∗(t)− q∗(t))2 + θ2(t;Q)

} ,
4d · log

(
3
α

)
mint∈[d] θ2(t;Q)

} (7)

for every sufficiently large d, where m ≥ C1 · n1+ε

(pm−pu)2
for

some C1, ε > 0, and θ2(t;Q) :=
[
2 minw∈[d]Q(t, w)− 1

]2
.

Note that θ2(t;Q) is the worst-case error exponent for
the task type t. This exponent appears when the task-type
matching fails, and thus the aggregated responses might come
from the mismatched worker cluster with the worst reliability.

B. Baseline comparison for a special model

We next discuss a specific model where the MV and the SS
algorithm can strictly perform better than the other depending
on a model parameter. Consider a special d-type specialization
model

Q = q1d×d + (p− q)Id, (8)

where 1
2 ≤ q < p < 1 are universal constants [13], [20], i.e.,

each worker provides an answer with fidelity p > q if the task
type matches the worker type, and with q ≥ 1/2 otherwise.

For the standard majority voting estimator (4), Proposition
III.1 implies that the sufficient condition for (2) is

|A|
m

=

{
Ω
(
log
(
1
α

))
if q > 1

2 ;

Ω
(
d2 log

(
1
α

))
otherwise.

(9)

For the subset-selection scheme [20], Proposition III.2 implies
that the subset-selection algorithm succeeds if

|A|
m

=

{
Ω
(
d log

(
1
α

))
if q > 1

2 ;

Ω
(
d log

(
d
α

))
otherwise.

(10)

By (9) and (10), the majority voting rule (4) and the subset-
selection algorithm (6) do not consistently beat each other. In

order to understand the reason, consider the spammer/hammer
model [10]: the j-th worker is referred to as a hammer for the
i-th task if Fij = 1; a spammer if Fij = 1

2 . If all workers are
nearly hammers, i.e., Q(t, w) ≈ 1 for all (t, w) ∈ [d] × [d],
the majority voting using all responses outperforms the subset-
selection scheme since the subset-selection scheme abandons(
d−1
d

)
-fraction of answers. On the other hand, if we consider

the regime where q∗(t) ≈ 1
2 and p∗(t)− q∗(t) = Θ(1) for all

t ∈ [d], then all workers with types different from a given task
type are nearly spammers. For this case, the subset-selection
scheme is far better than the majority voting, since the majority
voting does not rule out the dominant random noisy answers.
Indeed, as shown in (9) and (10), the subset-selection scheme
requires d times more queries than the standard majority voting
if q > 1/2, while it requires only 1/d times queries if q = 1/2.

The main question is how to design an algorithm achieving
the superior performance in both parameter regimes when the
model parameters are unknown, which is common in practice.

IV. MAIN RESULTS

A. Fundamental limits

We establish the fundamental limits on the required number
of queries. The optimality result will be characterized in terms
of the minimax risk: R∗(A) := inf â

(
supa∈{±1}m R (a, â)

)
.

We first present a sufficient condition from ML estimator (3).

Theorem IV.1 (Information-theoretic achievability). For any
target accuracy α ∈

(
0, 12
]
, the ML estimator (3) achieves

the desired recovery accuracy (2), R∗(A) ≤ R
(
a, âML

)
≤ α,

under SM (d;Q), provided that the worker-task assignment set
A ⊆ [m]× [n] satisfies

min
i∈[m]

|A(i)| ≥ 1

γ1 (d;Q)
log

(
1

α

)
, (11)

where γ1 (d;Q) := log

(
d

2maxt∈[d]

(∑d
w=1

√
Q(t,w)(1−Q(t,w))

)).

Next, the corresponding impossibility result is summarized.

Theorem IV.2 (Statistical impossibility). For any α ∈
(
0, 18
]

and worker-task assignment set A ⊆ [m]× [n] satisfying

γ2 (d;Q)

(
|A|
m

)
+ Γ (d;Q)

√
|A|
m

< log

(
1

4α

)
, (12)

no inference methods based on the worker-task assignment set
A can achieve (2) in the model SM(d;Q). Here, γ2 (d;Q) :=

log

(
d2

2
∑

(t,w)∈[d]×[d]

√
Q(t,w)(1−Q(t,w))

)
, and Γ(d;Q) denotes

the log-odds of the maximum reliability, that is, Γ (d;Q) :=

log
(

max(t,w)∈[d]×[d]Q(t,w)

1−max(t,w)∈[d]×[d]Q(t,w)

)
.

Note that the error exponents for the information-theoretic
upper bound γ1 (d;Q) and the lower bound γ2 (d;Q) coincide
when 1

d

∑d
w=1

√
Q(t, w) (1−Q(t, w)) are equal for all t ∈

[d], i.e., when all task types have the same overall difficulty,
when averaged over all worker types.
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Remark 1 (Fundamental limits under a special model). Under
the special model (8), by Theorem IV.1, the recovery accuracy
(2) is achievable via the ML estimator (3) if

|A|
m

=

{
Ω
(
log
(
1
α

))
if q > 1

2 ;

Ω
(
d log

(
1
α

))
otherwise,

(13)

while it is statistically impossible by Theorem IV.2 whenever

|A|
m

=


o
(
log
(
1
α

))
if q > 1

2 ;

o
(
d log

(
1
α

))
if q = 1

2 and log
(
1
α

)
= Ω(d);

o
((

log
(
1
α

))2)
if q = 1

2 and log
(
1
α

)
= o(d).

(14)
The order analyses (13) and (14) match up to a constant factor
when either q > 1

2 or q = 1
2 and log

(
1
α

)
= Ω(d). From (9)

and (10), the order-wise optimal result is achievable by the
majority voting if q > 1/2 and by the subset-selection scheme
if q = 1/2 and log

(
1
α

)
= Ω(d). We will develop an algorithm

achieving the order-wise optimal result for both cases.

B. Proposed algorithm

Our main algorithm consists of two stages, where Stage #1
recovers the hidden clusters of workers, and Stage #2 uses the
recovered cluster structure to choose the cluster of the matched
type for each task and then use this information to infer true
labels via weighted majority voting. Our algorithm takes the
advantages of both the MV and the subset-selection algorithm.

Algorithm 1 (The proposed inference algorithm).
1) Stage #1: (Worker clustering via convex optimization).

(a) Let S ⊆ [m] be a set of randomly chosen r tasks and
assign each task in S to all n workers. Based on the
responses Mi∗ = (Mij : j ∈ [n]) for i ∈ S, we define
the similarity matrix A := Poff-diag

(∑
i∈SM

>
i∗Mi∗

)
,

where Poff-diag(·) : Rn×n → Rn×n zeroes out all
diagonal entries of an input n× n matrix;

(b) Solve the following semi-definite program:

max
X∈Rn×n

〈A− η1n×n,X〉

subject to X � 0; 〈In,X〉 = n;

0 ≤ Xij ≤ 1, ∀(i, j) ∈ [n]× [n],

(15)

where η > 0 is a tuning parameter. Perform the
approximate k-medoids clustering (Algorithm 1 in [7])
on the optimal solution X̂SDP to the SDP (15) to extract
d worker clusters

{
Ŵ1, · · · , Ŵd

}
, when d is known;

(c) For each task i ∈ [m] \ S and cluster w ∈ [d], assign
task i to randomly selected l workers from each Ŵw.

2) Stage #2: (Task-type matching and label inference).

(a) For every i ∈ [m], we first select Aw(i) ∈
(A(i)∩Ŵw

l

)
2

for every w ∈ [d] and define A′(i) :=
⋃d
w=1Aw(i) ⊆

A(i). Then, we estimate the task type of i ∈ [m] by
computing t̂i := argmaxw∈[d]

∣∣∣∑j∈Aw(i)Mij

∣∣∣;
2
(X
l

)
denotes the set of all size-l subsets of the set X .

(b) Designate weights θi∗ = (θij : j ∈ A′(i)) for each i ∈
[m] as per the following rule:

θij :=

{
1 if j ∈ At̂i(i);

1√
d−1 otherwise,

(16)

and infer the label ai via the weighted majority voting
using weights (16): âi := sign

(∑
j∈A′(i) θijMij

)
.

Theorem IV.3 (Statistical analysis of Alg.1). We consider the
same setting with Proposition III.2. Then, the same result holds
when we replace the error exponent θ2 (d;Q) by

θ3(t;Q) :=
1

2

[
1√
d− 1

d∑
w=1

{2Q(t, w)− 1}

+

(
1− 1√

d− 1

){
2 min
w∈[d]

Q(t, w)− 1

}]2
,

(17)

when d is sufficiently large and m = ω
(

n3

(pm−pu)2

)
.

Remark 2 (Comparison of the sample complexity). We first
compare the sample complexity of Alg.1 against that of the

subset-selection scheme. As θ3 (t;Q) ≥ (1+
√
d−1)

2

2 θ2 (t;Q),
the error exponent θ3 (t;Q) of Alg.1 is strictly larger than the
error exponent θ2 (t;Q) of the SS scheme. Thus, Alg.1 can
be viewed as a strict improvement over the SS algorithm.

We then compare the sample complexity of Alg.1 and the
standard majority voting rule. Since θ3 (t;Q) & d·θ1 (t;Q) for

every t ∈ [d], it follows that
4d·log( 3

α )
mint∈[d] θ3(t;Q) .

log( 1
α )

mint∈[d] θ1(t;Q)

as d→∞. This implies that the sample complexity of Alg.1
is either smaller than or equal to that of the standard majority
voting in an order-wise sense.
Remark 3 (Order-wise optimality of Alg.1 under the special
model). Let us revisit the special model (8). By Theorem IV.3,
the recovery accuracy (2) is achievable by Alg.1 provided that

|A|
m

=

{
Ω
(
log
(
1
α

))
if q > 1

2 ;

Ω
(
d log

(
d
α

))
otherwise,

(18)

which meets the bound (13) of the sample complexity per task
required for the ML estimator (3) in both regimes q > 1

2 and
q = 1

2 (up to logarithmic factors when α = ω (1/d)).
Remark 4 (Main differences from SS algorithm). Alg.1 has
two remarkable differences from the subset-selection (SS) al-
gorithm [20]. First, the SS algorithm recovers the hidden type
structure of workers by counting the same responses between
every pair of workers sequentially, while Alg.1 unveils the type
structure by solving the SDP (15). The SDP relaxation ap-
proach has been extensively used in the community detection
literature [1], [2], [3], [15]. This approach makes the clustering
stage more robust against the model variants and allows an
easier parameter tuning for η in (15). Second, the SS algorithm
estimates the ground-truth labels via the MV using answers
from matched workers only. Alg.1, on the other hand, infers
the labels via the weighted MV by utilizing all responses with
proper weights based on the result from task-type matching.
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Fig. 1: Synthetic data experiment for qmax ∈ {0.5, 0.6, 0.7}.

Remark 5 (Weights on responses). We discuss the reason for
the choice of specific weights (16). Suppose that we choose
weights θi∗ = (θij : j ∈ A′(i)), where θij := 1 if j ∈ At̂i(i)
and θij := δ(d) otherwise, for some function δ(·) : N→ R+.
Alg.1 with weights θi∗, i ∈ [m], achieves the target accuracy
(2) in the model (8) if

|A|
m
≥ min

{
4d · log

(
6d+3
α

)
min {πm(d;Q), (p− q)2 + πu(d;Q)}

,

4d · log
(
3
α

)
min {πm(d;Q), πu(d;Q)}

}
,

(19)

where πm(d;Q) and πu(d;Q) denote the error exponents of
matched type and mismatched type, respectively, such that

πm(d;Q) =

Θ
(

1+d2{δ(d)}2

1+d{δ(d)}2

)
if q > 1

2 ;

Θ
(

1
1+d{δ(d)}2

)
otherwise,

πu(d;Q) =

Θ
(

1+d2{δ(d)}2

1+d{δ(d)}2

)
if q > 1

2 ;

Θ
(
{δ(d)}2

1+d{δ(d)}2

)
otherwise.

(20)

To make (19) meet the desired order (13), we need to choose
δ(·) to satisfy δ(d) � 1/

√
d. For the sake of simplicity, we

choose δ(d) := 1/
√
d− 1 as (16).

V. EMPIRICAL RESULTS

We provide the empirical performance comparison. The in-
ference quality is measured by the fraction of labels that do not
match with the ground-truth, i.e., 1

m

∑m
i=1 1 (âi(M) 6= ai).

A. Experiments with synthetic data

We compare the empirical performance of the proposed
algorithm with two main baselines, the standard majority
voting (MV) rule and the subset-selection (SS) algorithm in
Fig.1, when (m,n, r, d) = (25000, 100, 300, 5) with varying
(pmin, qmax), where pmin := mina∈[d]Q(a, a) and qmax :=
maxa6=bQ(a, b). For the fixed value pmin = 0.9, as qmax

increases, the quality difference between the answers from the
matched workers and the mismatched workers decreases.

As shown in Fig.1, the performance of the SS is better than
that of the MV for a smaller qmax, while that of the MV gets
improved for a larger qmax. Our algorithm attains consistently
the best performances across all considered parameters as our
theory implies (Remark 3).

B. Experiments with real-world data

We conduct experiments on real data collected from MTurk.
Binary tasks using 600 images of athletes are designed where
each a quarter is from one of four sports types (d = 4): foot-
ball, baseball, soccer and basketball. Each human intelligent
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Algorithm 1

Fig. 2: Experiment with real data from the Amazon MTurk

task (HIT) is designed to contain 80 images, where four types
are evenly covered with 20 randomly sampled images from
each type. We ask whether the athlete in each image is over
30 years old. Total 60 HITS are assigned to 60 workers.

We first check whether the collected real data indeed follows
a type structure. Since only the task types are known, we infer
the ground-truth worker types based on the correct answer rate
of each worker on each task type, calculated using the ground-
truth label information. Then, the reliability matrix Q can be
computed by averaging the empirical correct answer rate for
each task-worker type pair (t, w) ∈ [d]× [d]:

Q =

0.8647 0.5467 0.4962 0.5700
0.5765 0.9000 0.4846 0.5833
0.5573 0.5344 0.7825 0.7025
0.6131 0.5611 0.4542 0.9379

 .

The diagonal entries are larger than the off-diagonal entries,
showing the existence of type structure in this real-world data.

In Fig.2, we compare our algorithm with other algorithms,
including EM [6], Variational [17], KOS [10], Ratio-Eigen
[5], and specEM [22], all of which are developed under the
Dawid-Skene model. The performances of MV and SS are
also plotted. For ablation study of our algorithm, which has
two prominent differences from the SS, we also consider
the SS scheme with only clustering stage replaced by our
SDP clustering (SDP-SS). From each HIT of 80 answers,
[32, 48, 64]-answers are randomly sampled total 100 times
and used to calculate the empirical average for the fraction
of errors 1

m

∑m
i=1 1 (âi(M) 6= ai), plotted in Fig.2. From

this plot, we observe that Alg.1 outperforms all the other
algorithms developed based on strict model assumptions, and
the benefits come from both the improved clustering (Stage
#1) and the weighted majority voting with properly chosen
weights (Stage #2).

VI. CONCLUSION

We explored the crowdsourced labeling problem in a highly
generalized d-type specialization model. Our algorithm infers
the types of workers and tasks, and use this information to
utilize all the responses from workers with a proper weighting
scheme. It achieves the order-wise optimal result across gen-
eral parameter regimes, and also empirically performs better
than the existing algorithms for real-world datasets.
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