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Robust Hypergraph Clustering via Convex
Relaxation of Truncated MLE

Jeonghwan Lee, Daesung Kim , and Hye Won Chung , Member, IEEE

Abstract—We study hypergraph clustering in the weighted
d-uniform hypergraph stochastic block model (d-WHSBM),
where each edge consisting of d nodes from the same community
has higher expected weight than the edges consisting of nodes
from different communities. We propose a new hypergraph clus-
tering algorithm, called CRTMLE, and provide its performance
guarantee under the d-WHSBM for general parameter regimes.
We show that the proposed method achieves the order-wise
optimal or the best existing results for approximately balanced
community sizes. Moreover, our results settle the first recovery
guarantees for growing number of clusters of unbalanced sizes.
Involving theoretical analysis and empirical results, we demon-
strate the robustness of our algorithm against the unbalancedness
of community sizes or the presence of outlier nodes.

Index Terms—Hypergraph clustering, stochastic block model,
maximum likelihood estimator, convex relaxation, matrix concen-
tration inequalities.

I. INTRODUCTION

AHYPERGRAPH is an effective way to represent com-
plex interactions among objects of interests. Different

from classical graph modeling, where each edge connects only
two nodes to model pairwise interactions, in hypergraphs an
edge can connect more than two nodes to represent multi-
way interactions among the nodes. Hypergraphs have been
studied with diverse practical applications, such as cluster-
ing categorial databases [43], modeling folksonomies [37],
image segmentation [4], and partitioning of circuit netlists in
VLSI design [48].

In this article, we study clustering problem in weighted uni-
form hypergraphs: Given a weighted hypergraph, our goal is
to partition nodes into disjoint clusters so that within-cluster
edges tend to have higher weights than cross-cluster edges.
We propose an algorithm that recovers the hidden commu-
nity structure from relatively sparse hypergraphs with growing
number of unequal-sized communities, and analyze its statis-
tical performance that either gives new consistency results for
previously unknown parameter regimes or matches the best
existing results.
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We focus on a generative random hypergraph model called
the hypergraph stochastic block model, to evaluate hypergraph
clustering algorithms. In graph clustering, the most widely
studied model is the stochastic block model (SBM) [46], also
referred to as the planted partition model [26], where given
an underlying partition �∗ of n nodes, a graph is generated
such that two nodes in the same community are more likely
to be adjacent than other pairs of nodes. We consider an
extension of the standard SBM to weighted uniform hyper-
graphs, known as the weighted d-uniform hypergraph SBM
(d-WHSBM) [5], [42]. We assume that all edges have the
same size d. An edge is called �∗-homogeneous if it con-
sists of d nodes from the same community, and is called
�∗-heterogeneous otherwise. In this model, a random weight
is assigned from [0, 1] independently to each edge such that
�∗-homogeneous edges tend to have higher weights with
expectation pn than �∗-heterogeneous edges, which have
weights with expectation qn < pn.

A. Main Contributions

We provide a hypergraph clustering algorithm based on
the truncate-and-relax strategy, called Convex Relaxation of
Truncated Maximum Likelihood Estimator (CRTMLE), which
is motivated by [50], [51] under the unweighted hypergraph
SBM with two equal-sized communities.

Our algorithm can handle the high-dimensional case of
d-WHSBM with hidden communities of order-wise unbal-
anced sizes. More precisely, our algorithm can operate in
the d-WHSBM with parameters satisfying (1) the number
of communities k may grow in n, and (2) the order of
community sizes can be different, i.e., smax/smin = ω(1),
where smin and smax denote the minimum and maximum
community sizes, respectively. As opposed to our general
setup, most recent developments on efficient hypergraph clus-
tering methods under variants of hypergraph SBM assume
either the approximate balancedness of community sizes, i.e.,
smax/smin = O(1), or the constant number of communities,
i.e., k = �(1), for easiness of statistical analysis.

Our main contribution is a statistical analysis of CRTMLE
in general regimes for parameters (pn, qn, smin), which are
allowed to scale in n. Our main theorem shows that CRTMLE
achieves the strong consistency (a.k.a. the exact recovery,
which means that all the nodes are clustered correctly w.h.p.)
provided that the density gap pn − qn satisfies

pn − qn = �

(
n

d−2
2 ·√pn(smin log n + n)

sd−1
min

)
. (1)
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Note that the condition (1) does not explicitly depend on the
number of communities k but only though smin. From this
single condition, we can show that our algorithm achieves
the order-wise optimal or the best known performance, which
mainly assumes smax/smin = �(1) or smin = smax. Moreover,
up to our knowledge, this is the first result showing a sufficient
condition for exact recovery in the d-WHSBM with growing
number of communities of order-wise unbalanced sizes.

Our technical byproduct is the derivation of a sharp concen-
tration bound on the spectral norm of a certain random matrix,
called the similarity matrix, which has dependency among
entries. Most existing concentration results of random matrices
are built upon the independence between entries. To resolve
the dependency issues, we use the celebrated combinatorial
argument developed by Friedman, Kahn, and Szemerédi [27],
[33], [36]. Details can be found in Section VII-A.

This article is organized as follows. We provide an overview
of related works in Section I-B and introduce the d-WHSBM
and formulate the hypergraph clustering problem under this
model in Section II. Section III presents our hypergraph clus-
tering algorithm (CRTMLE), and Section IV provides its
performance guarantee. In Section V, we further discuss vari-
ants of the d-WHSBM and provide the performance guarantee
of CRTMLE for the model variants. In Section VI, we pro-
vide some simulation results that demonstrate the robustness
of CRTMLE against the unbalancedness of community sizes
and the presence of outlier nodes. In this section, we also
apply the proposed algorithm to subspace clustering [4], to
demonstrate the performance and robustness of CRMLE in
real applications. The proof of main theorem is provided
in Section VII-B, and other technical proofs are deferred to
appendices. Section VIII is devoted for final remarks.

B. Related Works

1) Graph Clustering: We first review existing results for
graph clustering (d = 2) and compare them with our key con-
dition (1), which holds for any d ≥ 2. The graph clustering has
been extensively studied with full generality to find sufficient
conditions of strong consistency with computationally-feasible
algorithms. Under the SBM with pn = �(1), qn = �(1) and
|pn − qn| = �(1), exact recovery can be solved efficiently
provided that smin = �(

√
n) by spectral clustering [15] or

convexified MLE [9], [18], [57]. We remark that this state-
of-the-art result is also valid for variants of the SBM which
allows semi-randomness [32], [53] or outlier nodes. From the
key condition (1), one can see that if pn = �(1), qn = �(1)

and |pn − qn| = �(1), CRTMLE achieves the state-of-the-art
result smin = �(

√
n) of the exact recovery for general d ≥ 2.

When edge densities are in the form of pn = pαn and qn = qαn

for some constants p > q > 0, and the number of communi-
ties k may grow in n, the sparsity level αn which allows the
exact recovery in the SBM within polynomial time is known
to be αn = �((n+smin log n)/s2

min) [13]. The key condition (1)
reads αn = �((nd−2(smin log n + n))/s2d−2

min ), which coincides
with the above result for the graph case. For the standard SBM
with constant number of communities of approximately bal-
anced sizes, various computationally-efficient methods achieve

the order-wise optimal sparsity level αn = �(log n/n) [2], [3],
[45], [56], and our result also achieves this limit under the
above setting.

2) Hypergraph Clustering: We next provide review for the
hypergraph clustering from three different perspectives: (a)
formulation of a generative random hypergraph model, (b)
characterization of information-theoretic thresholds, and (c)
identification of computational limits of efficient algorithms.

Generative Random Hypergraph Model: One of the most
widely studied random models for hypergraph is the hyper-
graph SBM. Most of the previous works for hypergraph SBM
assume either the constant number of communities or the
balancedness of the community sizes. In [50], [51], the hyper-
graph SBM with two equal-sized clusters is studied, which is
also known as the hypergraph planted bisection model. The
weighted hypergraph case is probed in [5] for the case where
the number of communities is fixed and community sizes
are approximately balanced. In [25], the dense regime (i.e.,
pn = �(1) and qn = �(1)) for hyperedges is investigated
with multiple equal-sized communities.

In this article, our focus is on the weighted d-uniform
hypergraph SBM with growing number of clusters without
any particular assumptions on the balancedness of commu-
nity sizes. In this model, we assume that homogeneous edges,
which consist of d nodes from the same community, tend to
have higher weights with expectation pn, while heterogeneous
edges having weights with expectation qn < pn.

We remark that there are several extensions available for
d-WHSBM. In [21], [22], [38], [39], [41], hypergraph planted
partition model or hypergraph SBM is considered where
the hyperedge probabilities depend on edge homogeneity of
the composed nodes, i.e., the more concentrated groups of
nodes in terms of assigned communities are connected with
higher probability. Also, the non-uniform hypergraph SBM,
in which the sizes of hyperedges may vary, is investigated
in [42]. Recently, [49] proposed a model, called the hypergraph
degree-corrected SBM, to handle the degree heterogeneity.

Information-Theoretic Limits: After establishing the under-
lying random model suitable for each application of hyper-
graphs, one should decide a target recovery type (a.k.a.,
consistency type of estimators). Typically, there are 3 recovery
types (strong consistency, weak consistency, and detection) in
estimating the ground-truth community assignment, which will
be elaborated in Section II. In [5], [38], [39], [41], [42], [49],
the weak consistency is studied. The strong consistency condi-
tions are analyzed in [5], [50], [51]. There are limited number
of works on detection of communities in hypergraphs [5], [58].
In this article, we focus on the strong consistency in recovering
the ground-truth communities.

A sharp statistical limit for the strong consistency is estab-
lished for the hypergraph planted bisection model in [51]. The
optimal minimax rates of the fraction of misclustering error are
analyzed in [21], [22] in the hypergraph SBM which reflects
the edge homogeneity. For the binary-edge case, [5] shows
that a spectral clustering method with local refinement pro-
cedure achieves the order-wise optimal limit for the strong
consistency when the number of communities is constant
and their sizes are approximately balanced. In Section IV-B,
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we show this optimality can be achieved by CRTMLE in
the same regime. As this order-wise threshold is achieved
via polynomial-time methods, it is not only the (order-wise)
information-theoretic limit, but also the computational limit.

Efficient Algorithms and Computational Limits: In order to
establish the computational limit, a polynomial-time algorithm
should be designed with which the target recovery type can be
achieved. In comparison to graph clustering literature, strong
consistency in hypergraphs has been studied mainly assuming
balanced community structures to provide theoretical analysis
on the proposed methods. Up to our knowledge, our result is
the first one that provides a sufficient condition for the strong
consistency that can be achieved within polynomial-time even
for the case with growing number of communities of order-
wise unbalanced sizes.

Due to remarkable practical advantages in implementation
and computational aspects, many recent works on hypergraph
clustering are built upon the spectral clustering methodol-
ogy. One noteworthy approach is to truncate the observed
hypergraph down to a weighted graph, where the edge
weight assigned to {i, j} ∈ ([n]

2

)
equals the number of

hyperedges containing both i and j. Then, the latent mem-
bership structure is inferred by applying the standard spectral
clustering method to either the adjacency matrix of the trun-
cated weighted graph [5], [25], [39], [42] or the hypergraph
Laplacian matrix [21], [22], [41]. Another prominent approach
is to conduct a higher-order singular value decomposition
(HOSVD) [29], [52] on the adjacency tensor of the observed
hypergraph and then run k-means clustering on the out-
put matrix obtained by HOSVD [38], [40]. Recently, [49]
developed a new method to cope with the degree heterogeneity
in hypergraphs.

Compared to spectral clustering, there are limited endeav-
ors with convex relaxation approach for hypergraphs.
In [50], [51], an efficient algorithm is designed based on the
truncate-and-relax strategy which consists of two stages: (1)
truncate an observed hypergraph down to a weighted graph,
and (2) relax a combinatorial optimization problem on the
truncated objective function. They derived its strong consis-
tency result under the hypergraph SBM with two equal-sized
communities. We extend it to the weighted case with multiple
communities of unequal sizes. The reason that we consider
the convex relaxation approach rather than the spectral clus-
tering method in general parameter setup is that conventional
spectral clustering methods are known to be sensitive to the
unbalancedness of community sizes and the presence of outlier
nodes in graphs [15], [24], [55]. In Section VI, we mani-
fest the robustness of CRTMLE against the unbalancedness
of community sizes and the presence of outlier nodes via
experimental results and compare it to other spectral methods.

C. Notations

Let Mi∗ and M∗j denote the ith row and the jth column of
M ∈ R

m×n, respectively. For any vector d = (d1, . . . , dn) ∈
R

n, diag(d) denotes the n × n diagonal matrix with diago-
nal entries d1, . . . , dn. For any positive integers m and n, we
denote by 1m×n the m × n all-one matrix and In the n × n

identity matrix. For any n × n real symmetric matrix S, let
λi(S) denote the ith largest eigenvalue of S. For any v ∈ R

n

and an integer d ≥ 2, the d-fold tensor product of v, v⊗d ∈
R

[n]d
, is given by v⊗d(i1, i2, . . . , id) := ∏d

k=1 vik for every
i1, i2, . . . , id ∈ [n]. Naturally, the inner product of two real
n-dimensional d-tensors A, B ∈ R

[n]d
is defined by 〈A, B〉: =∑n

i1=1
∑n

i2=1 · · ·∑n
id=1 A(i1, i2, · · · , id)B(i1, i2, · · · , id).

For n ∈ N, let [n] := {1, 2, . . . , n}. Given a set A and a
non-negative integer m, we set

(A
m

)
:= {B ⊆ A : |B| = m} and( A

≤m

)
:= {B ⊆ A : |B| ≤ m} = ∪m

l=0

(A
l

)
.

II. PROBLEM SETUP

Let V := [n] be the set of n vertices and E := ([n]
d

)
denote

the set of all edges of size d (a.k.a., d-regular edges) for a fixed
integer d ≥ 2. Also, let k be the number of communities that
may depend on n and P(n, k) denote the set of all partitions
of n nodes into k communities.

Any partition � : [n] → [k] in P(n, k) can be charac-
terized as a membership matrix Z(�) ∈ {0, 1}n×k given by
[Z(�)]ij = 1 if j = �(i) and 0 otherwise. Let Z(n, k) :=
{Z(�) : � ∈ P(n, k)} denote the set of all membership
matrices corresponding to partitions in P(n, k). We say that
a d-regular edge e = {i1, i2, . . . , id} ∈ E is �-homogeneous
if �(i1) = �(i2) = · · · = �(id), and �-heterogeneous oth-
erwise. A natural concept to characterize the homogeneity of
d-regular edges with respect to the partition � is the cluster
tensor given by T(�)(i1, i2, . . . , id) = 1 if �(i1) = �(i2) =
· · · = �(id), and 0 otherwise. Note that T(�) is symmetric and
we have T(�) = ∑k

j=1 [Z(�)]⊗d
∗j for every � ∈ P(n, k). Also,

let T (n, k) := {T(�) : � ∈ P(n, k)} be the set of all cluster
tensors corresponding to partitions � ∈ P(n, k). We now for-
mally define the weighted d-uniform hypergraph SBM, which
has an abbreviation d-WHSBM.

Definition 1 (The d-WHSBM): With parameters n, k ∈ N,
pn, qn ∈ [0, 1] and �∗ ∈ P(n, k), the weighted d-uniform
hypergraph stochastic block model is a generative random
hypergraph model which samples a weighted d-uniform hyper-
graph H = ([n], W = (We : e ∈ E)) according to the following
rule: a random weight We ∈ [0, 1] is assigned to each d-
regular edge e ∈ E independently; we have E[We] = pn if
e ∈ E is a �∗-homogeneous edge, and E[We] = qn otherwise.
This model is denoted by d-WHSBM(n, k, pn, qn,�

∗) and the
parameter �∗ ∈ P(n, k) is called the ground-truth partition or
the ground-truth community assignment.

Observe that d-WHSBM does not specify the edge weight
distribution, but only specifies their expectations. Following
the standard SBM literature, we mainly focus on the case
pn > qn (assortative case) throughout this article. The case
pn < qn (disassortative case) can be discussed by consider-
ing the complement hypergraph H := ([n], W) of the given
hypergraph H, where W := (1 − We : e ∈ E).

While our model looks similar to the one in [5], the number
of communities k may grow in n (a.k.a., the high-dimensional
regime [19], [20]) in our model. We denote by Z∗ := Z(�∗)
and T∗ := T(�∗) the ground-truth membership matrix and
the ground-truth cluster tensor, respectively. Throughout this
article, we write C∗

a := (�∗)−1(a), a ∈ [k], to denote the
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TABLE I
SUMMARY OF NOTATIONS AND DESCRIPTIONS

ath ground-truth community. We also denote by sa := |C∗
a |,

smin := min{sa : a ∈ [k]} and smax := max{sa:a ∈ [k]} the size
of the ath community, the minimum and the maximum sizes of
communities, respectively. We remark that d-WHSBM extends
the graph case (d = 2) to the d-uniform hypergraph setting
for general d ≥ 2 [47], [66].

Consistency Types of Estimators: Given a weighted random
d-uniform hypergraph H = ([n], W), we want to recover the
ground-truth community assignment �∗ up to a permutation.
To be precise, given any estimator �̂ = �̂(W) : [n] → [k],
we define the fraction of misclustering error of �̂ by

err
(
�̂,�∗) := 1

n
min
π∈Sk

∣∣∣{i ∈ [n] : �∗(i) �= π
(
�̂(i)

)}∣∣∣,
where Sk denotes the symmetric group of degree k. Then, we
say that an estimator �̂ = �̂(W) : [n] → [k] is

1) strongly consistent (a.k.a., solving the exact recovery) if
limn→∞ P{err(�̂,�∗) = 0} = 1.

2) weakly consistent (a.k.a., solving the almost exact recov-
ery) if err(�̂,�∗) → 0 in probability as n → ∞.

3) solving the detection if there exists a positive real num-
ber ε > 0 such that limn→∞ P{err(�̂,�∗) ≥ 1

k +ε} = 1.
Throughout this article, we will focus on the strong consis-
tency of estimators (a.k.a. the exact recovery [1], [30]).

The set of notations introduced in this section is summarized
in Table I.

III. ALGORITHM DESCRIPTION

Our proposed algorithm, Convex Relaxation of Truncated
Maximum Likelihood Estimator (CRTMLE), consists of three
main stages: (1) truncation of maximum likelihood estima-
tor (MLE), (2) semi-definite program (SDP) relaxation and
(3) explicit clustering via approximate k-medoids clustering
method. We first explain those steps to motivate the algorithm
and then provide the complete algorithm.

A. Truncation of Maximum Likelihood Estimator

Given a sample H = ([n], W) drawn by
d-WHSBM(n, k, pn, qn,�

∗), we consider the MLE T̂MLE(W)

of the ground-truth cluster tensor T∗. We analyze the MLE
for the binary-valued edge weight case and later show that
the algorithm developed for the binary-edge case achieves the
strong consistency guarantee even for the general weighted
case.

The log-likelihood function of observing the binary-valued
weighted hypergraph W = (We:e ∈ E) given a cluster tensor

T ∈ T (n, k) is

logP{W|T}
= log

∏
e∈E

[(
pn(1 − qn)

qn(1 − pn)

)WeTe
(

1 − pn

1 − qn

)Te

× qWe
n (1 − qn)

1−We

]

= log

(
pn(1 − qn)

qn(1 − pn)

)∑
e∈E

WeTe − log

(
1 − qn

1 − pn

)∑
e∈E

Te

+ (constant terms of T)

= 1

d!

[
log

(
pn(1 − qn)

qn(1 − pn)

)
〈W, T〉 − log

(
1 − qn

1 − pn

)
〈1E , T〉

]
+ (constant terms of T), (2)

where Te := T(i1, i2, . . . , id) for every d-regular edge e =
{i1, i2, . . . , id} ∈ E (this convention is well-defined since T is
a symmetric d-tensor.), and 1E ∈ R

[n]d
denotes the indicator

tensor of the d-regular edge set E , i.e., 1E (i1, i2, . . . , id) := 1
if i1, i2, . . . , id ∈ [n] are all distinct and 0 otherwise. Here, we
may view W as a symmetric n-dimensional d-tensor given by
W(i1, i2, . . . , id) := W{i1,i2,...,id} if 1E (i1, i2, . . . , id) = 1, and
0 otherwise. The assumption pn > qn gives T̂MLE(W) ∈

arg max{〈W, T〉 − μ〈1E , T〉 : T ∈ T (n, k)}, (3)

where μ = μ(pn, qn) := log(1−qn)−log(1−pn)
log pn+log(1−qn)−log qn−log(1−pn)

> 0.
Intuitively, the optimization problem (3) seeks for a cluster
tensor T ∈ T (n, k) which maximizes a penalized correlation
with the observed data W. Note that the regularization term
plays a role in balancing the number of homogeneous edges
and heterogeneous edges in order to avoid the circumstance of
having too many edges aligned with groups of nodes belonging
to the same community.

For each cluster tensor T, there is a corresponding mem-
bership matrix Z ∈ Z(n, k) such that T = ∑k

j=1(Z∗j)
⊗d.

By defining Y := 2Z − 1n×k and Y(n, k) := {2Z − 1n×k ∈
{±1}n×k : Z ∈ Z(n, k)}, we can represent the MLE (3) in
terms of Y: ŶMLE(W) ∈

arg max

⎧⎨
⎩
〈

W − μ1E ,

k∑
j=1

(
Y∗j + 1n

)⊗d

〉
: Y ∈ Y(n, k)

⎫⎬
⎭,

(4)

where 1n ∈ R
n is the n-dimensional all-one vector. By uti-

lizing the expansion [(Y∗j + 1n)
⊗d]e = ∏

i∈e(Yij + 1) =∑
I⊆e(

∏
i∈I Yij) for every d-regular edge e ∈ E , one can

observe that for every Y ∈ Y(n, k), we may deduce that the
objective function fW : Y(n, k) → R of (4) is given by

fW(Y)
(a)= d!

k∑
j=1

∑
e∈E

∑
I⊆e

(We − μ)

(∏
i∈I

Yij

)

(b)= d!
k∑

j=1

∑
I∈([n]

d )

∑
e∈E :I⊆e

(We − μ)

(∏
i∈I

Yij

)

= d!
∑

I∈([n]
≤d)

⎡
⎣ ∑

e∈E :I⊆e

(We − μ)

⎤
⎦
⎡
⎣ k∑

j=1

(∏
i∈I

Yij

)⎤⎦,
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where (a) is due to the symmetry of W and (Y∗j + 1n)
⊗d

and (b) is simply from interchanging the order of summation.
Here, we define polynomials in an indeterminate Y by

(pl)W(Y) :=
∑

I∈([n]
l )

⎡
⎣ ∑

e∈E :I⊆e

(We − μ)

⎤
⎦
⎡
⎣ k∑

j=1

(∏
i∈I

Yij

)⎤
⎦

for l ∈ {0, 1, . . . , d}. Some straightforward calculations yield

(p0)W(Y) = k

d!
〈W − μ1E ,1E 〉,

(p1)W(Y) = d(2 − k)

d!
〈W − μ1E ,1E 〉,

(p2)W(Y) =
∑

1≤i<j≤n

⎡
⎣
⎛
⎝ ∑

e∈E :{i,j}⊆e

We

⎞
⎠− μ

(
n − 2

d − 2

)⎤⎦
×
[
YY�]

ij
,

and thereby it follows that

fW(Y) = (k + 2d − dk)〈W − μ1E ,1E 〉 + d!(p2)W(Y)

+ (higher-order terms of Y). (5)

Instead of evaluating the maximum of the high-order polyno-
mial fW(Y) over Y ∈ Y(n, k), we first approximate (5) by
truncating terms of order higher than 2 and compute the max-
imum of the truncated polynomial over Y ∈ Y(n, k). This
computation is called the truncated maximum likelihood esti-
mation and the corresponding estimator is denoted by Ŷtrunc
given by Ŷtrunc(W) ∈ arg max{(p2)W(Y) : Y ∈ Y(n, k)}. It is
clear that Ŷtrunc(W) = 2Ẑtrunc(W) − 1n×k, where

Ẑtrunc(W) ∈ arg max{(p2)W(Z) : Z ∈ Z(n, k)}. (6)

This degree-2 truncation strategy has been considered
in [50], [51], where the truncated MLE for the hypergraph
SBM was derived and analyzed for two balanced clusters.
We analyze this estimator for general parameter regimes. The
coefficients of the polynomial (p2)W(Y) stimulates us to con-
sider the truncation of the weighted hypergraph H = ([n], W)

down to a weighted graph whose adjacency matrix is referred
to as the similarity matrix [5], [25], [35], [51].

Definition 2 (Similarity Matrix): The similarity matrix A
of a weighted d-uniform hypergraph H = ([n], W) is an n×n
real symmetric matrix with entries Aij := ∑

e∈E :{i,j}⊆e We if
i �= j; and Aij := 0 otherwise.

From (p2)W(Z) = 1
2 〈A−μ

(n−2
d−2

)
1n×n, ZZ�〉+ n

2μ
(n−2

d−2

)
, we

arrive at the following equivalent formulation of (6):

Ẑtrunc(W) ∈ arg max{〈
A − μ

(
n − 2

d − 2

)
1n×n, ZZ�

〉
: Z ∈ Z(n, k)

}
. (7)

Note that the program (7) is non-convex and computationally
infeasible since the feasible set Z(n, k) is discrete, non-convex
and exponentially large as |Z(n, k)| = |P(n, k)| = �(en).

B. Convex Relaxation of Truncated MLE

To derive a convex relaxation of (7), it is more convenient
to recast the problem as the following form:

max
X∈X (n,k)

〈
A − μ

(
n − 2

d − 2

)
1n×n, X

〉
, (8)

where X (n, k) := {ZZ� : Z ∈ Z(n, k)}. Let X(�) :=
Z(�)[Z(�)]� ∈ X (n, k) denote the cluster matrix correspond-
ing to � ∈ P(n, k). We may observe that any X ∈ X (n, k)
satisfies the following convex properties: (1) all entries of X
lie in [0, 1], (2) Trace(X) = n, and (3) X is positive definite.
By relaxing the non-convex constraint in (8), we obtain an
SDP given by:

max
X∈Rn×n

〈A − λ1n×n, X〉
subject to X � O; 〈In, X〉 = n;

0 ≤ Xij ≤ 1, ∀i, j ∈ [n], (9)

where O is the n × n all-zero matrix. The tuning parame-
ter λ ≥ 0, which substitutes the coefficient μ

(n−2
d−2

)
, must

be specified. One can think of the tuning parameter λ as
a regularization parameter that controls the sparseness of X
since 〈1n×n, X〉 = ‖X‖1, which is immediate from Xij ≥ 0,
∀i, j ∈ [n]. An optimal solution X̂SDP(W) to the SDP (9) will
play a role as an estimator of the ground-truth cluster matrix
X∗ := Z∗(Z∗)� ∈ X (n, k).

Remark 1 (Tuning Parameter λ): The proper choice of the
tuning parameter λ is important in the performance of SDP (9).
As will be shown in main results, the tuning parameter λ

should be chosen to lie between the minimum within-cluster
similarity and the maximum cross-cluster similarity (which are
specified in Section IV-A) to guarantee the exact recovery. The
parameter λ specifies the resolution of clustering algorithm: a
higher λ tends to detect smaller clusters with similarity (in
the similarity matrix A) larger than λ. So, varying λ results
in different solutions with cluster resolutions determined by
λ. For this reason, it is not generally possible to determine a
unique choice of λ from the data. Similar phenomenon has
been known for an SDP for graph clustering [18]. If the com-
munity sizes are all equal, on the other hand, it is possible
to determine a proper choice of λ in a completely data-driven
way with a theoretical guarantee (see Section IV-C for details).

Remark 2: Instead of (9), we may consider the alternative
SDP below:

max
X∈Rn×n

〈A, X〉
subject to X � 0; 0 ≤ Xij ≤ 1, ∀i, j ∈ [n];

〈In, X〉 = n; 〈1n×n, X〉 = 〈
1n×n, X∗〉. (10)

We remark that the program (9) can be viewed as a penalized
form of (10), obtained by removing the constraint on the term
〈1n×n, X〉 but instead penalizing it. Since X∗

ij = 1 if and only
if both i and j belong to the same ground-truth community,
one has 〈1n×n, X∗〉 = ∑n

i=1
∑n

j=1 X∗
ij = ∑k

a=1 s2
a. Thus, the

alternative SDP (10) does not require parameter tuning for λ

compared to (9), but instead it requires the exact knowledge
of the sum of squares of the community sizes

∑k
a=1 s2

a. This
requisite may be unrealistic to assume in practical applications,
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however it becomes more reasonable whenever clusters are all
equal-sized. In this section, we focus on the penalized SDP (9),
and we turn to the alternative SDP (10) later when we allow
the existence of outlier nodes, which refer to nodes that belong
to no community, for the balanced case.

C. Explicit Clustering via Approximate k-Medoids Clustering

We next present a method to extract an explicit clustering
from the solution X̂SDP = X̂SDP(W) of the SDP (9). The
basic idea is to use k-medoids clustering for the n row vectors
of X̂SDP. To explain the algorithm details, we first review k-
medoids clustering problem. Let X := {x1, x2, . . . , xn} be the
given n input data points that lie in the ambient Euclidean
space R

p, and X ∈ R
n×p be a matrix with Xi∗ = xi, ∀i ∈ [n].

The k-medoids clustering problem searches for a clustering
assignment of these n data points and the corresponding cen-
ters of k clusters {v1, v2, . . . , vk} ⊆ X such that the sum of
l1-norms of each data point to its cluster center is minimized.
We can formalize this problem as below:

min
�,v1,...,vk

k∑
a=1

⎡
⎣ ∑

i∈�−1(a)

‖xi − va‖1

⎤
⎦

subject to � ∈ P(n, k);
v1, v2, . . . , vk ∈ X. (11)

Representing the cluster centers {v1, v2, . . . , vk} as row vectors
of a matrix V ∈ R

k×p, the problem (11) can be re-written as
the following compact form:

min
Z,V

‖ZV − X‖1

subject to Z ∈ Z(n, k), V ∈ R
k×p;

Rows(V) ⊆ Rows(X), (12)

where Rows(M) denotes the set of row vectors of a matrix
M, and ‖M‖1 is the sum of absolute values of all entries of
M. A common method to solve the k-medoids problem (11) is
the k-medoids clustering algorithm, which approximately min-
imizes the objective function of (11) by alternately minimizing
over � and v1, v2, . . . , vk. We may extract a clustering from
X̂SDP by applying the k-medoids clustering method on its
row vectors. However, it has a crucial shortcoming in com-
putational aspect since finding the medoid of given dataset is
computationally hard in general. More generally, computing
the exact optimizer (Z̃, Ṽ) of (12) is known to be NP-hard.

To address this issue, [14] proposed an efficient algorithm
to solve the k-medoids problem approximately. This algorithm
produces an output (Ẑ, V̂) feasible to (12) within polynomial-
time such that ∥∥∥ẐV̂ − X

∥∥∥
1

≤ 20

3

∥∥∥Z̃Ṽ − X
∥∥∥

1
.

From this output (Ẑ, V̂), we can extract a community assign-
ment �̂ by letting �̂(i) be the unique non-zero coordinate of
Ẑi∗. This efficient clustering extraction method was originally
designed in [17], [31], and is called the approximate k-medoids
clustering algorithm. See [31, Alg. 1] for the detailed proce-
dure. Moreover, the authors provide an error bound of the

Algorithm 1 CRTMLE: Convex Relaxation of Truncated
MLE

1: Data: A weighted d-uniform hypergraph H = ([n], W), a
tuning parameter λ > 0.

2: Compute the similarity matrix A ∈ R
n×n of H.

3: Solve the SDP (9) with A. Let X̂SDP = X̂SDP(W) be an
optimal solution.

4: Employ the approximate k-medoids clustering (Algorithm
1 in [31]) on X̂SDP for extraction of an explicit community
assignment, �̂SDP(W) : [n] → [k].

5: Output: The community assignment �̂SDP = �̂SDP(W).

output of their method. See Proposition 3 therein: Given any
estimator X̂ = X̂(W) of X∗, let �̂ be the output of the
approximate k-medoids clustering on X̂. Then, it satisfies

err
(
�̂,�∗) ≤ 86

3

∥∥∥X̂ − X∗
∥∥∥

1

‖X∗‖1
.

This bound implies �̂SDP = �∗ whenever X̂SDP = X∗,
where �̂SDP denotes the output of CRTMLE. Furthermore,
there have been some recent breakthroughs in randomized
algorithms for finding the medoid of the given dataset by con-
verting the medoid problem to a multi-armed bandit statistical
inference problem [10], [61]. Applying them enables faster
implementation of the k-medoids clustering algorithm.

Remark 3 (Computational Tractability of CRTMLE): The
time complexity of step 2 in CRTMLE (see Algorithm 1 for
the detailed procedure) is O(2

(d
2

)|E |) = O(nd) since each d-
regular edge e ∈ E appears 2

(d
2

)
times during the construction

of A. Also we note that SDPs are solvable efficiently either
by the interior point method [6] or the alternating direction
method of multipliers [12]. Thus, step 3 in Algorithm 1 can
be done within polynomial-time. Finally, as we discussed in
Section III-C), the approximate k-medoids clustering (step
4 in Algorithm 1) operates within polynomial-time. Thus,
CRTMLE is a polynomial-time algorithm, i.e., computation-
ally tractable regardless of its success or failure in the exact
recovery.

IV. MAIN RESULTS

In this section, we analyze the statistical performance of
our proposed algorithm and compare it with existing works
(Section IV-A and IV-B). Finally, we discuss how we can esti-
mate the tuning parameter λ required in the SDP (9) under the
balanced case (Section IV-C).

A. Performance Analysis of CRTMLE

While our main algorithm (CRTMLE) is derived from the
MLE for the binary-valued edge case of d-WHSBM, we study
its performance guarantee for the general case. We aim to
characterize a sufficient condition for the strong consistency
of CRTMLE under the d-WHSBM.

Consider any two off-diagonal entries Aij and Ai′j′ of the
similarity matrix with �∗(i) = �∗(i′) and �∗(j) = �∗(j′).
Then, one can see that E[Aij] = E[Ai′j′]. Consequently, we
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can define a k × k real symmetric matrix 
 whose entries are
given by 
ab := E[Aij], where i ∈ C∗

a and j ∈ C∗
b , for some

i �= j. We can compute the entries of 
 explicitly as


aa =
(

sa − 2

d − 2

)
(pn − qn) +

(
n − 2

d − 2

)
qn, ∀a ∈ [k];


ab =
(

n − 2

d − 2

)
qn, ∀a �= b in [k].

One can see that the diagonal entries of 
 are strictly larger
than its off-diagonal entries in the assortative d-WHSBM. The
diagonal entries and the off-diagonal entries of 
 are referred
to as within-cluster similarities and cross-cluster similarities,
respectively. To elucidate an appropriate choice of the tuning
parameter λ in the SDP (9), we adopt the convention that

p−
n := min{
aa : 1 ≤ a ≤ k}

=
(

smin − 2

d − 2

)
(pn − qn) +

(
n − 2

d − 2

)
qn;

q+
n := max{
ab : 1 ≤ a < b ≤ k} =

(
n − 2

d − 2

)
qn,

to denote the minimum within-cluster similarity and the max-
imum cross-cluster similarity, respectively.

Now, we provide an explicit condition on model parameters
(n, pn, qn, smin) as well as the tuning parameter λ, under which
the solution X̂SDP to the convex program (9) is capable of
recovering the ground-truth cluster matrix X∗ perfectly.

Theorem 1 (Performance Guarantee Under the Assortative
d-WHSBM): Let A be the similarity matrix of H = ([n], W)

sampled by d-WHSBM(n, k, pn, qn,�
∗) with pn > qn. Then,

there is a constant c1 > 0 such that the ground-truth cluster
matrix X∗ is the unique optimal solution to the SDP (9) with
probability greater than 1 − 6n−11, provided that the tuning
parameter λ satisfies the inequality

1

4
p−

n + 3

4
q+

n ≤ λ ≤ 3

4
p−

n + 1

4
q+

n , (13)

and model parameters satisfy

s2
min

(
smin − 2

d − 2

)2

(pn − qn)
2

≥ c1

(
n − 2

d − 2

)
pn(smin log n + n). (14)

Note that (14) has no explicit dependencies on the num-
ber of communities k but only through smin. The proof of
Theorem 1 will be elaborated in Section VII-B.

Remark 4 (Condition (13) on λ): To understand the con-
dition on the choice of the tuning parameter λ as in (13),
we need to take a closer look at a specific part in the
proof of Theorem 1: a lower bound on (Q3) in (25). One
can make an observation that it suffices to take λ such that
(p−

n − λ)(1 − Xij) ≥ c(p−
n − q+

n )|X∗
ij − Xij| for X∗

ij = 1,
i.e., for pairs of nodes (i, j) belonging to the same cluster,
and (λ − q+

n )Xij ≥ c(p−
n − q+

n )|X∗
ij − Xij| for X∗

ij = 0, i.e.,
for pairs of nodes (i, j) belonging to different communities,
for some constant c > 0 from (25). Therefore, we need to
choose λ such that (p−

n − λ) ∧ (λ − q+
n ) ≥ c(p−

n − q+
n ). In

other words, λ should lie between the minimum within-cluster

similarity p−
n and the maximum cross-cluster similarity q+

n to
balance the false positives and the false negatives in the vari-
able X. Even though we made a particular choice c = 1

4 herein
which yields the condition (13), the constant c can be any
number in (0, 1

2 ] as the absolute constant c1 in Theorem 1
can be manipulated to be sufficiently large. In conclusion, the
condition (13) can be replaced by the weaker one such as
λ ∈ [cp−

n + (1 − c)q+
n , (1 − c)p−

n + cq+
n ] for any 0 < c ≤ 1

2 .

B. Comparison With Literature

We next discuss interesting remarks implied by Theorem 1
and also provide comparisons with existing results.

Remark 5 (Sparsity): We consider the case (a) pn = pαn

and qn = qαn for some constants p > q > 0, where the fac-
tor αn stands for sparsity level of edge weights, which may
depend on n. We can deduce that CRTMLE is strongly consis-
tent if αn = �((nd−2(smin log n+n))/s2d−2

min ) from Theorem 1.
Now, we impose two additional assumptions on parameters:
(b) the number of communities k is constant of n; (c) the
ground-truth communities are approximately balanced, i.e.,
smax/smin = O(1). We remark that this case is studied in [5],
and we have smin = �(n) and thus it follows that CRTMLE
is strongly consistent if αn = �(log n/nd−1). It coincides
with the strong consistency guarantee of Hypergraph Spectral
Clustering with Local Refinement (HSCLR) [5].

Remark 6 (Number of Communities): Suppose that model
parameters satisfy the assumption (a) from Remark 5 with
sparsity level αn = 1 (this regime is known as the dense
regime). We also assume that (b) the communities are equal-
sized, i.e., smin = smax. The d-WHSBM with parameters
obeying (b) is called the balanced d-WHSBM and denoted
by d-WHSBMbal(n, k, pn, qn,�

∗). Different from Remark 5,
assume that the number of communities k may scale in n.
Let s = n/k be the size of each cluster. Then, Theorem 1
implies that CRTMLE is strongly consistent when s2d−2 =
�(nd−2(s log n + n)) for this case. From this result, it is easy
to see that CRTMLE exactly recovers the hidden partition if
s = �(

√
n) (equivalently, k = n

s = O(
√

n)), and we find that
this result agrees with the performance of the spectral method
proposed in [25]. We emphasize that Theorem 1 is applicable
to the weighted case, while the performance analysis in [25]
only considers the binary-edge case of d-WHSBM.

Remark 7 (Order-Wise Unbalanced Community Sizes):
Most of the strong consistency results under variants of hyper-
graph SBM have been limited to the case in which community
sizes are approximately balanced. To the best of our knowledge,
this is the first study on the strong consistency for the hyper-
graph SBM without any such assumptions on cluster sizes. In
particular, if the assumption (a) from Remark 5 is assumed
with αn = 1, CRTMLE achieves the strong consistency when
smin = �(

√
n) regardless of smax by Theorem 1. In Section VI,

we further demonstrate the robustness of CRTMLE against the
unbalancedness of community sizes empirically, and compare
its performance with other spectral methods.

Remark 8 (Comparison With the Best Known Result for the
Graph Case): One can see that the key condition (14) reads
pn−qn√

pn
� (

√
n

smin
)d−2 max{

√
n

smin
,

√
log n
smin

}. Now, we consider the

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 14,2025 at 23:35:26 UTC from IEEE Xplore.  Restrictions apply. 



620 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 3, NOVEMBER 2020

Algorithm 2 Estimation of λ From the Observed Data

1: Data: The observed similarity matrix A ∈ R
n×n.

2: Compute and sort the eigenvalues of A; denote them by
λ̂i: = λi(A) for each i ∈ [n].

3: Let k̂: = arg max
{
λ̂i − λ̂i+1 : i ∈ {2, 3, . . . , n − 1}

}
(bro-

ken tie uniformly at random).
4: Set ŝ: = n

k̂
, p̂−

n : = ŝλ̂1+(n−ŝ)λ̂2
n(ŝ−1)

and q̂+
n : = λ̂1−λ̂2

n .

5: Output: An estimator λ̂: = p̂−
n +q̂+

n
2 of λ.

binary-edge case of the graph SBM. The best known result for

the exact recovery is pn−qn√
pn

� max{
√

n
smin

·
√

qn
pn

,

√
log n
smin

} [13] in
this model. Under the parameter regime pn/qn = �(1), which
encompasses the most challenging regime of the SBMs, our
result matches with the best known result.

Remark 9 (Tightness): Our proposed algorithm is both
computationally feasible and information-theoretically optimal
under the assumptions (a), (b) and (c) in Remark 5, since it
has been proven in [28] that there is no strongly consistent
estimator when αn = o(log n/nd−1) and CRTMLE achieves
the strong consistency if αn = �(log n/nd−1). On the other
hand, it is still an open problem whether smin = �(

√
n) gives

the order-wise computational limit in the setting assumed in
Remark 7 even for the graph case [9], [13], [18], [20], [57].
We argue in Section V-B that it is possible to exactly recover
the hidden clique of size s = �(

√
n) within poly-time in

the planted clique model for hypergraphs. Even though it has
been conjectured that s = o(

√
n) is a computationally-hard

regime [7], [34], [60], proving this conjecture rigorously still
remains open. Furthermore, no general thresholds, i.e., con-
verse result of Theorem 1 or the information-theoretic limit,
are known for general parameter regimes of (n, k, pn, qn,�

∗).

C. Estimating the Tuning Parameter in the Balanced Case

Our algorithm CRTMLE requires an extraneous input λ. For
its success, we need to make a suitable choice of the tuning
parameter λ so that it obeys the bound (13). In this section, we
consider the balanced case of the d-WHSBM (smin = smax)
and provide an algorithm (Algorithm 2) to specify the tuning
parameter λ in a completely data-driven way by estimating the
model parameters (k, pn, qn) with strong theoretical guaran-
tees. Let d-WHSBMbal(n, k, pn, qn,�

∗) denote the balanced
model and s denote the size of communities.

Algorithm 2 is built upon the observation that the eigenval-
ues of E[A] are given by

λi := λi(E[A])

=

⎧⎪⎨
⎪⎩
(s − 1)

(
p−

n − q+
n

)+ (n − 1)q+
n when i = 1;

(s − 1)
(
p−

n − q+
n

)− q+
n when 2 ≤ i ≤ k;

−p−
n when k + 1 ≤ i ≤ n.

(15)

Similar idea is utilized to setup the tuning parameter of SDP
for graph clustering in the SBM [18].

Theorem below guarantees that the errors of the estimators
k̂, ŝ, p̂−

n and q̂+
n from Algorithm 2 are sufficiently small and

the estimator λ̂ of λ satisfies the desired condition (13) in
Theorem 1. Now we state the formal result below, deferring
the proof to Appendix A.

Theorem 2 (Accuracy of Estimators From Algorithm 2): Let
A denote the similarity matrix of H = ([n], W) generated
by d-WHSBMbal(n, k, pn, qn,�

∗). Suppose that the condi-
tion (14) holds with a sufficiently large constant c2 > 0. Then,
the estimators computed in Algorithm 2 satisfy the following
properties with probability exceeding 1 − 4n−11:

1. k̂ = k and ŝ = s,

2. max
{∣∣p̂−

n − p−
n

∣∣, ∣∣q̂+
n − q+

n

∣∣} ≤ 2c5

s

√
n

(
n − 2

d − 2

)
pn,

3. λ̂ ∈
[

1

4
p−

n + 3

4
q+

n ,
3

4
p−

n + 1

4
q+

n

]
.

Here, the constant c5 in Corollary 2 is specified with α = 1.
Merging Algorithm 1 and 2, we get a complete polynomial-

time algorithm, which identifies the hidden partition of [n]
w.h.p. in the balanced d-WHSBM without any prior knowl-
edge of model parameters (k, pn, qn).

V. MODEL EXTENSIONS

In this section, we study two important variations of the
d-WHSBM to reflect circumstances where edge weights are
partially observed or outlier nodes may exist, and we analyze
our algorithm under these modified models.

A. Clustering Partially Observed Weighted Hypergraphs

We consider the case where multi-way relations among the
nodes are partially observed. A standard and extensively used
model for clustering partially-observed unweighted graphs is
a random graph model with missing data, also known as
the SBM with partial observations [16], [18], [57], [64]. We
extend this model to the weighted hypergraph case as fol-
lows: First, consider a weighted hypergraph H = ([n], W)

sampled by d-WHSBM(n, k, pn, qn,�
∗). Each entry of W is

observed independently with probability εn. We let Wobs :=
(Wobs

e : e ∈ E) denote the observed weighted d-uniform hyper-
graph, i.e., for each e ∈ E , the associated weight Wobs

e is
given by Wobs

e = We ∈ [0, 1] if the entry We is observed,
and Wobs

e = × otherwise. We refer to this model as the d-
WHSBM with partial observations with parameters n, k ∈ N,
0 ≤ qn < pn ≤ 1, εn ∈ [0, 1] and �∗ : [n] → [k].

Our main goal is to recover the latent membership structure
with partial observations. This clustering problem with missing
data can be solved efficiently via the following two-stage pro-
cedure. First, set to zero all the unobserved entries of Wobs and
let W′ denote the weighted d-uniform hypergraph obtained by
zeroing-out the unobserved entries of Wobs. Then, we perform
CRTMLE on H′ := ([n], W′). The zero-imputed weighted d-
uniform hypergraph H′ = ([n], W′) of Hobs can be viewed
as a data generated by the d-WHSBM(n, k, pnεn, qnεn,�

∗),
so that the theoretical guarantee of this two-stage method is
obtained from Theorem 1 immediately.

Corollary 1 (Performance Guarantee Under the d-
WHSBM With Missing Data): Let H′ = ([n], W′) be the
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TABLE II
COMPARISON WITH EXISTING RESULTS ON EXACT RECOVERY UNDER THE SBM WITH PARTIAL OBSERVATIONS

zero-imputed data of a sample Hobs = ([n], Wobs) drawn
from the d-WHSBM with partial observations and A′ denote
its similarity matrix. Then, the SDP (9) applied to A′ with a
tuning parameter λ obeying

1

4
p−

n εn + 3

4
q+

n εn ≤ λ ≤ 3

4
p−

n εn + 1

4
q+

n εn,

recovers the ground-truth cluster matrix X∗ exactly with
probability at least 1 − 6n−11, when

(pn − qn)

√
εn

pn
≥ c2

( √
n

smin

)d−2

max

{ √
n

smin
,

√
log n

smin

}
,

where c2 > 0 is an absolute constant. Here, p−
n and q+

n refer
to the minimum within-cluster similarity and the maximum
cross-cluster similarity, respectively. (See Section IV-A for
details.)

To the best of our knowledge, there has been no prov-
able computationally-feasible method for clustering partially
observed hypergraphs for general parameters. Nonetheless,
there are some eminent works on clustering graphs with miss-
ing data. Their common framework is the graph SBM with
partial observations. Since Corollary 1 is applicable to this
model, we may compare it with previous works. See Table II
for a summary of comparison with literature. In this table, we
let τn := max{1 − pn, qn} and thus 1 − 2τn is a lower bound
of the density gap pn − qn. One can see that our analytical
result is either as good as or order-wise stronger than existing
works when smin � n/ log n. If smin � n/ log n, our result is
order-wise better than ones in [16], [18].

B. Effect of Outlier Nodes

In this subsection, we show that CRTMLE is robust against
the presence of outlier nodes in the balanced d-WHSBM.

1) Robustness Against Outlier Nodes in the Balanced Case:
The robustness of CRTMLE against the unbalancedness of
cluster sizes is a crucial benefit, compared to spectral meth-
ods, as summarized in Remark 7. Another strength of convex
relaxation methods is the robustness against outlier nodes [55],
which will be elaborated in this subsection for the balanced
case. There are several existing works studying the effect of
outliers [13], [18], [20] for graph clustering, but not many for
hypergraph clustering.

First, consider a new framework for hypergraph clustering
that allows the presence of outlier nodes. Let V := [n] = I∪O
be the set of n nodes, where I is the set of inlier nodes, while
O denotes the set of outlier nodes. These nodes are endowed
with the following latent membership structure: each inlier

node i ∈ I is labeled with community assignment �∗(i) ∈ [k],
while every outlier node o ∈ O is simply labeled by �∗(o) =
k + 1. We denote k hidden clusters and their sizes by C∗

a :=
(�∗)−1(a) and sa := |C∗

a |, a ∈ [k], respectively. Also, we
use the convention that C∗

k+1 := (�∗)−1(k + 1) = O and
sk+1 := |C∗

k+1| = n−∑k
a=1 sa, and emphasize that C∗

k+1 is not
indeed an underlying community. Let smin := min{sa : a ∈ [k]}
and smax := max{sa : a ∈ [k]}. We assume that all communities
are equal-sized, i.e., s = smin = smax.

We first extend the �∗-homogeneity of each d-regular edge
e ∈ E and say that a d-regular edge e ∈ E is �∗-homogeneous
if e ⊆ C∗

a for some a ∈ [k], and �∗-heterogeneous otherwise.
We describe our main framework involving five model param-
eters, n, k ∈ N, 0 ≤ qn < pn ≤ 1 and �∗ : [n] → [k + 1].
A weighted d-uniform hypergraph H = ([n], (We : e ∈ E)) is
generated as follows: We ∈ [0, 1] is assigned to each e ∈ E
independently such that E[We] = pn if e is �∗-homogeneous,
and E[We] = qn otherwise. We call this model the balanced
d-WHSBM with outlier nodes. It can also be referred to as
the weighted d-uniform hypergraph planted clustering model
(d-WHPCM) by adopting terminologies from [20].

For subsequent discussion, we modify a matrix representa-
tion of the latent membership structure from Section III, which
reflects the presence of outlier nodes. Define the ground-truth
membership matrix Z∗ ∈ {0, 1}n×k defined by Z∗

ia = 1 if
�∗(i) = a and Z∗

ia = 0 otherwise. Note that Zi∗ = 0 if and
only if i ∈ [n] is an outlier node. Then, we can represent
the membership structure by the ground-truth cluster matrix
X∗ := Z∗(Z∗)�, where X∗

ii = 1 for i ∈ I, X∗
ii = 0 for i ∈ O,

and for every i �= j, X∗
ij = 1 if and only if i and j belong to

the same community.
We now assert that the SDP (10) is robust against the out-

lier nodes under the balanced case. In this case, the constraints
of (10) become 〈In, X∗〉 = ks and 〈1n×n, X∗〉 = ks2. So, with
the exact knowledge of the number of communities k and their
size s, we can implement the SDP (10). With this alternative
SDP, we obtain a provable polynomial-time algorithm which
identifies the hidden communities from an observed data gen-
erated by the d-WHPCM. The proof of the following result
closely follows the proof of Theorem 1, so we omit the details.

Theorem 3 (Performance Guarantee in the d-WHPCM):
Let A be the similarity matrix of a sample H drawn from
d-WHPCM(n, k, pn, qn,�

∗). Then, there is a universal con-
stant c4 > 0 (replacing c1 > 0 in (14)) such that the
ground-truth cluster matrix X∗ is the unique optimal solu-
tion to the SDP (10) with prob. greater than 1 − 6n−11, when
parameters obey the condition (14).
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Fig. 1. Empirical performance (the average fractional errors over 50 trials)
of the proposed algorithm CRTMLE (most left) compared to other state-of-
the-art algorithms for hypergraph clustering for the number of communities
k = 3. The community sizes become more unbalanced from (a) to (c). A
lighter color implies a lower fractional error.

2) Planted Clique Problem for Hypergraphs: One promi-
nent planted problem is the standard planted clique
problem [8]. We now generalize this problem for hypergraphs:
the task of finding a hidden clique of size s, that has been
planted in an Erdös-Rényi (ER) model for random d-uniform
hypergraphs.

Definition 3 (The Planted Clique Model for Hypergraphs):
Let C ⊆ [n] a hidden subset of size s ≤ n. A d-uniform

hypergraph H = ([n], E(H)), where E(H) ⊆ E , is generated
as follows: each d-regular edge e ∈ E appears independently
as an hyperedge of H with prob. 1 if e ⊆ C, and 1

2 otherwise.
Observe that the binary-edge case of the d-WHPCM, with

k = 1, pn = 1 and qn = 1
2 , retrieves the above model. Hence,

Theorem 3 ensures the exact recovery of the hidden clique
for the size s = �(

√
n) regardless of the value of d, and we

remark that this result is consistent with the state-of-the-art
bound for the graph case [8], [13], [18], [20].

VI. EMPIRICAL RESULTS

In this section, we provide simulation results demonstrating
the robustness of our proposed algorithm against the unbal-
ancedness of community sizes (Section VI-A) as well as the
presence of outliers (Section VI-B). We also conduct a set
of simulations to show the performance and robustness of
the proposed algorithm for a real application of hypergraph
clustering in computer vision, the subspace clustering [4] in
Section VI-C.

From all these experimental results, we are able to confirm
that CRTMLE outperforms the state-of-the-arts for hyper-
graph clustering, especially as community sizes become more
unbalanced or the number of outliers increases. We compare
the performance of our algorithm with several state-of-the-art
algorithms including TTM [39], NH-Cut [67], HOSVD [44],
HSCLR [5], and hMETIS [48]. All of these algorithms hinge
upon either spectral property of the similarity matrix or the
graph partitioning method, whereas our algorithm is based on
the SDP relaxation.

Fig. 2. Empirical performance (the average fractional errors over 50 trials)
of the proposed algorithm CRTMLE (most left) compared to other state-of-
the-art algorithms for hypergraph clustering for the number of communities
k = 4. The community sizes become more unbalanced from (a) to (b). A
lighter color implies a lower fractional error.

A. Robustness Against the Unbalancedness of Community
Sizes

Let us fix the size of hyperedges as d = 3 and use
Bernoulli distribution with mean pn for generating homo-
geneous hyperedges, and qn for heterogeneous hyperedges,
where

pn = p · n log n(n
d

) and qn = q · n log n(n
d

) ,

with some constants p > q > 0 which we will specify. We
set (n, p) ∈ {144, 288, 432, 576}× {10, 15, 20, 25}, where q is
fixed to 5, and set the number of clusters to be k ∈ {3, 4}.

1) k = 3: three different combinations of community sizes
{n/3, n/3, n/3}, {n/6, n/3, n/2}, {n/12, n/3, 7n/12} are
considered to represent the different levels of unbal-
ancedness.

2) k = 4: two different combinations {n/4, n/4, n/4, n/4}
and {n/12, n/6, n/3, 5n/12} are considered for the bal-
anced and unbalanced community sizes, respectively.

We run each algorithm 50 trials on randomly generated
hypergraphs and measure the fractional errors of each algo-
rithm. When implementing CRTMLE (Algorithm 1), we set
the tuning parameter λ = p−

n +q+
n

2 , where p−
n and q+

n are the
minimum within-cluster similarity and the maximum cross-
cluster similarity, respectively, as defined in Section IV-A. The
experimental results are summarized in Figure 1 for the case
k = 3, and in Figure 2 for the case k = 4, respectively. In
the figures, a lighter color implies a lower fractional error. We
can observe that CRTMLE shows comparable performance
with other algorithms when the community sizes are balanced,
but shows the best performance among all the algorithms
in most parameter regimes where the community sizes are
unbalanced. Especially, the performances of other algorithms
degrade as the community sizes become more unbalanced,
while CRTMLE has almost consistent performance regard-
less of the unbalancedness of the community sizes. This result
matches with Remark 7, where we explain that CRTMLE is
robust against the heterogeneity in community sizes.

B. Robustness Against the Presence of Outlier Nodes

In the next simulation, we add no outlier nodes for the case
of equal-sized communities with k = 3 and n = 300. A similar
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Fig. 3. Empirical performance (the average fractional errors over 50 trials)
of the proposed algorithm CRTMLE (most left) compared to other state-of-
the-art algorithms for hypergraph clustering for the number of communities
k = 3. A lighter color implies a lower fractional error. As the number of
outlier nodes (n0: x-axis) increases, the fractional error increases for all the
algorithms, but CRTMLE is the most robust algorithm against the outlier
nodes.

setting with previous ones in Section VI-A is assumed, except
that (no, p) ∈ {60, 90, 120, 150} × {10, 15, 20, 25}, and q = 1.
As expected, all methods excepting CRTMLE degrade as the
number of outlier nodes increases, but CRTMLE is the most
robust one against the outlier nodes, as shown in Figure 3.

C. An Application of Hypergraph Clustering: Subspace
Clustering

For the last experiment, we apply the hypergraph cluster-
ing to solve the subspace clustering problem [4], which has
wide applications in computer vision. In subspace clustering,
each cluster is formed by points that (closely) lie on the same
subspace. The goal is to recover these clusters by measur-
ing some similarities between d data points and applying the
hypergraph clustering on the generated weighted hypergraphs.
The weights of the hypergraph We ∈ [0, 1], e ∈ E , indicate the
“fitness” of the d points {i1, i2, . . . , id} by a hyperplane and the
higher We implies the better the d points can be fitted by a sub-
space. In this experiment, we use the simulation setup similar
to [39], [42]. In an ambient space of dimension 3, we randomly
generate three 1-dimensional subspaces (lines) and sample a
fixed number of data points from each subspace. After that, a
zero-mean Gaussian noise vector is added to every data point,
where the covariance matrix of the noise vector is σ I3. The
noise parameter σ indicates the level of difficulty in subspace
clustering. A uniform hypergraph with d = 3 is then gener-
ated by calculating polar curvature of every three data points,
which quantifies how close the three points can be fitted to
a line. We then compare the performance of CRTMLE with
other four state-of-the-art hypergraph clustering algorithms in
recovering k = 3 clusters for n ∈ {36, 72, 96, 144} and the
varying noise level σ . We run each algorithm for 50 trials and
plot the average of fractional errors for three different combi-
nations of community sizes {n/3, n/3, n/3}, {n/6, n/3, n/2},
and {n/12, n/3, 7n/12} in Fig. 4. The result shows a similar
trend with the first simulation: CRTMLE has comparable (or
sometimes worse) performance to other algorithms for equal-
sized case, but it is robust against the unbalancedness of cluster
sizes and thus performs better as the unbalancedness becomes
significant.

VII. PROOF OF MAIN RESULT

A. Concentration Bounds of Spectral Norm

Before we get into the proof of Theorem 1, we derive a
sharp concentration bound on the spectral norm ‖A − E[A]‖

Fig. 4. Empirical performance (the average fractional errors over 50 trials) of
the proposed algorithm CRTMLE (most left) compared to other state-of-the-
art algorithms for subspace clustering for the number of subspaces k = 3. The
cluster sizes (the number of points in each subspace) become more unbalanced
from (a) to (c). A lighter color implies a lower fractional error. The CRTMLE
is the most robust algorithm against the unbalancedness of cluster sizes.

in a specific parameter regime of the assortative d-WHSBM,
which will be elaborated below. It plays a crucial role in prov-
ing the main results. In spectral method and SDP analysis, it
has been a technical challenge to obtain a tight probabilistic
bound on the spectral norm of random matrices. Since stan-
dard random matrix theory used in concentration results of the
adjacency matrix of graph SBM mainly assumes the indepen-
dence between entries, they cannot be directly employed for
the similarity matrix A under the d-WHSBM, which has strong
dependencies across entries due to its construction. In [51], the
authors employ the matrix Bernstein inequality [62] to resolve
such a dependency issue occured in a variation of the graph
Laplacian matrix. Unfortunately, this approach is not strong
enough to settle the desired tight bound on A for a wider range
of parameter regimes considered in this article. To be specific,
utilizing the matrix Bernstein inequality on the decomposition
A = ∑

e∈E WeMe, where Me := ∑
i,j∈e:i �=j eie�

j for e ∈ E ,

gives ‖A − E[A]‖ = O(

√
n
(n−2

d−2

)
pn · log n). This results in a

weaker (sub-optimal) result than what we will demonstrate to
prove Theorem 1.

One of our technical contribution is in providing a tighter
spectral norm bound on A via the Friedman-Kahn-Szemerédi
argument, which is used in order to bound the second
largest eigenvalue of the adjacency matrices of random regu-
lar graphs [27], [33], [36]. Similar approach is emerged in [5]
for bounding the spectral norm of A0, a processed similar-
ity matrix, which is obtained by zeroing-out every row and
column of A whose sum is larger than a certain threshold.
More precisely, A0 is obtained by zeroing-out both the ith

row and column of A if
∑n

j=1 Aij > cthr · 1
n

∑n
i=1
∑n

j=1 Aij,
where cthr > 0 is a threshold constant. We do not proceed
such a trimming step and can still prove a concentration bound
directly for A, tighter than one obtained from matrix Bernstein
inequality by a logarithmic factor. Moreover, our result does
not assume any block structure in the underlying model, but

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 14,2025 at 23:35:26 UTC from IEEE Xplore.  Restrictions apply. 



624 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 3, NOVEMBER 2020

only assumes that a random weight We ∈ [0, 1] is indepen-
dently assigned to each e ∈ E and the maximum expectation
of weights is bounded as max{E[We] : e ∈ E} ≤ μn with
n
(n−2

d−2

)
μn = �(log n).

Theorem 4: Suppose that a random weight We ∈ [0, 1] is
independently assigned to each d-regular edge e ∈ E , where
H = ([n], (We, e ∈ E)) is a weighted d-uniform random
hypergraph, and let A be the similarity matrix of H. Also,
we assume that max{E[We] : e ∈ E} ≤ μn, where {μn} is a
sequence in (0,∞) such that n

(n−2
d−2

)
μn ≥ α log n for some

constant α > 0. Then, there is a universal constant c5 > 0
(depending on α) such that with probability at least 1−4n−11,
the similarity matrix A obeys the spectral norm bound

‖A − E[A]‖ ≤ c5

√
n

(
n − 2

d − 2

)
μn. (16)

The proof of Theorem 4 is deferred to Appendix B. We
remark that the extra

√
log n factor from the bound obtained

by matrix Bernstein inequality was removed in (16). Also
note that our bound (16) is a generalization of [54, Th. 5.2],
which provides a sharp spectral bound of the adjacency matrix
for the graph case. By using Theorem 4, we can obtain the
corresponding result for the assortative d-WHSBM directly.

Corollary 2: Let A denote the similarity matrix of H =
([n], W) sampled by d-WHSBM(n, k, pn, qn,�

∗) with pn >

qn. Suppose that there is an absolute constant α > 0 such
that n

(n−2
d−2

)
pn ≥ α log n. Then, there is an absolute constant

c5 > 0 (depending on α) such that with probability exceeding
1 − 4n−11, the similarity matrix A satisfies the bound

‖A − E[A]‖ ≤ c5

√
n

(
n − 2

d − 2

)
pn. (17)

B. Proof of Theorem 1

We first introduce additional notations and settings that will
be needed in the proof of Theorem 1. Let νn := (n−2

d−2

)
pn ≥

max{E[Aij] : i, j ∈ [n]}. Define the normalized member-
ship matrix corresponding to the ground-truth community
assignment �∗ by a matrix U ∈ R

n×k:

Uia :=
{

1√
sa

if �∗(i) = a;
0 otherwise.

Let T be the linear subspace of Rn×n spanned by elements of
the form U∗a · x� and y · U�∗a for a ∈ [k], where x and y are
arbitrary vectors in R

n, and T⊥ be its orthogonal complement.
The subspace T of R

n×n can be expressed explicitly by T =
{UA� + BU� : A, B ∈ R

n×k}. The orthogonal projection PT

onto T is given by PT(X) = UU�X+XUU�−UU�XUU� and
the orthogonal projection PT⊥ onto T⊥ is given by PT⊥(X) =
(I − PT)(X) = (In − UU�)X(In − UU�).

Recall that X ⊆ R
n×n refers to the feasible region of the

semi-definite program (9). To prove Theorem 1, it suffices to
show that for any X ∈ X \ {X∗},


(X) := 〈
A − λ1n×n, X∗ − X

〉
> 0.

Using the orthogonal projections PT and PT⊥ , we propose to
decompose the quantity 
(X) as


(X) = 〈
PT(A − E[A]), X∗ − X

〉
︸ ︷︷ ︸

(Q1)

+ 〈
PT⊥(A − E[A]), X∗ − X

〉
︸ ︷︷ ︸

(Q2)

+ 〈
E[A] − λ1n×n, X∗ − X

〉
︸ ︷︷ ︸

(Q3)

.

The subsequent arguments on bounding the terms (Q1), (Q2)
and (Q3) is akin to ones in [17], [20], except that the entries
of A are not independent anymore for the hypergraph case so
that it requires our new spectral bound (Corollary 2). Choose
a sufficiently large constant c1 > 1 and a universal constant
c5 = c5(1) > 0 which is specified in Corollary 2 with α = 1.
Below we establish lower bounds on the terms (Q1), (Q2)
and (Q3):

1) Lower Bound of (Q1): The following lemma provides a
sharp concentration bound on the l∞ norm of PT(A −E[A]):

Lemma 1: Under the d-WHSBM(n, k, pn, qn,�
∗) with

pn > qn satisfying the condition (14), the following bound
holds with probability at least 1 − 2n−11:

‖PT(A − E[A])‖∞ ≤ 3(d − 1)

(
9

c1
+
√

26

c1

)(
smin − 2

d − 2

)
× (pn − qn). (18)

The detailed proof of Lemma 1 is deferred to Appendix C.
Invoking Lemma 1 and Hölder’s inequality together give with
probability exceeding 1 − 2n−11,

(Q1) ≥ −‖PT(A − E[A])‖∞ · ∥∥X∗ − X
∥∥

1

≥ −3(d − 1)

(
9

c1
+
√

26

c1

)(
smin − 2

d − 2

)

× (pn − qn)
∥∥X∗ − X

∥∥
1. (19)

2) Lower Bound of (Q2): The ground-truth cluster matrix
X∗ = Z∗(Z∗)� has a rank-k SVD given by X∗ = U�U�,
where � ∈ R

k×k is the diagonal matrix with entries �aa = sa,
a ∈ [k]. Then, the sub-differential of the nuclear norm ‖ · ‖∗
at X∗ is expressed as

∂
∥∥X∗∥∥∗ =

{
B ∈ R

n×n : PT(B) = UU�,
∥∥PT⊥(B)

∥∥ ≤ 1
}
.

(20)

See [65, Ex. 2] or [59] for characterization of sub-gradients of
the nuclear norm. Therefore, PT⊥( A−E[A]

‖A−E[A]‖ )+UU� ∈ ∂‖X∗‖∗
from (20). It follows that for any X ∈ X ,

0 = Trace(X) − Trace
(
X∗) (a)= ‖X‖∗ − ∥∥X∗∥∥∗

(b)≥
〈
UU� + PT⊥

(
A − E[A]

‖A − E[A]‖
)

, X − X∗
〉
, (21)

where the step (a) holds since both X and X∗ are positive
semi-definite matrices and (b) follows from the definition of
sub-gradient. Hence, we obtain a lower bound on (Q2),

(Q2) = 〈
PT⊥(A − E[A]), X∗ − X

〉
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(c)≥ −‖A − E[A]‖ ·
〈
UU�, X∗ − X

〉
(d)≥ −‖A − E[A]‖ ·

∥∥∥UU�
∥∥∥∞ · ∥∥X∗ − X

∥∥
1

(e)≥ − 1

smin
‖A − E[A]‖ · ∥∥X∗ − X

∥∥
1, (22)

where (c) is a consequence of (21), (d) holds by the Hölder’s
inequality, and the step (e) is due to the fact that [UU�]ij =
1/s�∗(i) ≤ 1/smin whenever �∗(i) = �∗(j); 0 otherwise. Also,
the condition (14) leads to the inequality n

(n−2
d−2

)
pn ≥ log n,

∀n ∈ N. Thus, the centered similarity matrix obeys the
following bound with probability at least 1 − 4n−11:

‖A − E[A]‖ (f)≤ c5

√
n

(
n − 2

d − 2

)
pn

(g)≤ c5

√
1

c1
· smin

(
smin − 2

d − 2

)
(pn − qn), (23)

where the step (f) follows from Corollary 2 and (g) is due to
the condition (14). We thus conclude by using (22) and (23)
that with probability exceeding 1 − 4n−11,

(Q2) ≥ −c5

√
1

c1

(
smin − 2

d − 2

)
(pn − qn)

∥∥X∗ − X
∥∥

1. (24)

Here, we choose a sufficiently large constant c1 such that 3(d−
1)( 9

c1
+
√

26
c1

) + c5√
c1

≤ 1
8 .

3) Lower Bound of (Q3): First notice that E[Aij] ≥ p−
n if

i �= j and X∗
ij = 1; E[Aij] ≤ q+

n if i �= j and X∗
ij = 0 (Actually,

E[Aij] = q+
n for i �= j in [n] with X∗

ij = 0). Then,

(Q3) =
∑

i,j∈[n]:i �=j

(
E[Aij] − λ

)(
X∗

ij − Xij

)

+
n∑

i=1

(−λ)
(
X∗

ii − Xii
)

︸ ︷︷ ︸
= 0

(h)≥
∑
i �=j:

X∗
ij=1

(
p−

n − λ
)(

1 − Xij
)+

∑
i �=j:

X∗
ij=0

(
λ − q+

n

)
Xij

(i)≥ 1

4

(
p−

n − q+
n

) ∑
i,j∈[n]:i �=j

∣∣∣X∗
ij − Xij

∣∣∣
(j)= 1

4

(
smin − 2

d − 2

)
(pn − qn)

∥∥X∗ − X
∥∥

1, (25)

where both the step (h) and (j) are due to the fact Xii = 1, ∀i ∈
[n] for any feasible X, which is deduced from the constraints
Trace(X) = n and Xij ∈ [0, 1], ∀i, j ∈ [n], and (i) follows from
the condition (13).

To sum up, combining the above bounds on (Q1), (Q2) and
(Q3), we may conclude by a union bound that with probability
at least 1 − 6n−11,


(X) = (Q1) + (Q2) + (Q3)

≥ 1

8

(
smin − 2

d − 2

)
(pn − qn)

∥∥X∗ − X
∥∥

1,

thereby showing that 
(X) > 0 for all X ∈ X \ {X∗}.

VIII. CONCLUSION

In this article, we developed an efficient hypergraph cluster-
ing method (CRTMLE) on a basis of the truncate-and-relax
strategy, and proved its strong consistency guarantee under
the assortative d-WHSBM with growing number of communi-
ties of order-wise unbalanced sizes. Our results are consistent
with state-of-the-art results in various parameter regimes of the
model, and settle the first strong consistency result for the case
in which there are multiple communities of unbalanced sizes
with different orders. Also, we manifested the robustness of
CRTMLE against the unbalancedness of cluster sizes and the
presence of outlier nodes, both theoretically and empirically.

APPENDIX A
PROOF OF THEOREM 2

Let F denote the event that the spectral norm bound (17)
in Corollary 2 holds with α = 1. Note that Corollary 2 states
that P{F} ≥ 1−4n−11, since the condition (14) directly yields
the inequality n

(n−2
d−2

)
pn ≥ log n. It then follows that, on the

event F ,

max
{∣∣∣λ̂i − λi

∣∣∣ : i ∈ [n]
} (a)≤ ‖A − E[A]‖ ≤ c5

√
nνn, (26)

where (a) holds by the Weyl’s inequality [11], νn := (n−2
d−2

)
pn,

and c5 = c5(1) > 0. We henceforth assume that we are on the
event F .

A. Estimation of k and s

The triangle inequality and the bound (26) imply that

λ̂i − λ̂i+1 =
(
λ̂i − λi

)
−
(
λ̂i+1 − λi+1

)
≤
∣∣∣λ̂i − λi

∣∣∣+ ∣∣∣λ̂i+1 − λi+1

∣∣∣ ≤ 2c5
√

nνn (27)

for every i ∈ [n − 1] \ {1, k}, and

λ̂k − λ̂k+1 ≥ λk − λk+1 −
∣∣∣λ̂k − λk

∣∣∣− ∣∣∣λ̂k+1 − λk+1

∣∣∣
(b)≥ s

(
s − 2

d − 2

)
(pn − qn) − 2c5

√
nνn, (28)

where the step (b) follows by (15). Then, one has

nνn = n

(
n − 2

d − 2

)
pn

(c)≤ 1

c2
s2
(

s − 2

d − 2

)2

(pn − qn)
2,

where the step (c) is due to the condition (14). Therefore, it’s
straightforward that

s

(
s − 2

d − 2

)
(pn − qn) ≥ √

c2
√

nνn > 8c5
√

nνn, (29)

since c2 > 0 is chosen sufficiently large. Putting (29) together
with inequalities (27) and (28), we have

λ̂k − λ̂k+1 ≥ s

(
s − 2

d − 2

)
(pn − qn) − 2c5

√
nνn

> 2c5
√

nνn ≥ λ̂i − λ̂i+1 (30)

for all i > 1 with i �= k. This guarantees k̂ = k and ŝ = s.
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B. Estimation of p−
n and q+

n

From the triangle inequality and (26), the estimation error
of p̂−

n obeys

∣∣p̂−
n − p−

n

∣∣ (d)=
∣∣∣∣∣∣
s
(
λ̂1 − λ1

)
+ (n − s)

(
λ̂2 − λ2

)
n(s − 1)

∣∣∣∣∣∣
≤ s

n(s − 1)

∣∣∣λ̂1 − λ1

∣∣∣+ n − s

n(s − 1)

∣∣∣λ̂2 − λ2

∣∣∣
≤ 2c5

√
nνn

s
, (31)

where the step (d) is owing to ŝ = s. Similarly, we can deduce
the following estimation error of q̂+

n :

∣∣q̂+
n − q+

n

∣∣ = 1

n

∣∣∣(λ̂1 − λ1

)
−
(
λ̂2 − λ2

)∣∣∣
≤ 2c5

√
νn

n
≤ 2c5

√
nνn

s
. (32)

C. Estimation of λ

The error bounds (31) and (32) yield

λ̂ = p−
n + q+

n

2
+ p̂−

n − p−
n

2
+ q̂+

n − q+
n

2

≤ p−
n + q+

n

2
+ 2c5

√
nνn

s
(e)≤ p−

n + q+
n

2
+ 1

4

(
s − 2

d − 2

)
(pn − qn)

= 3

4
p−

n + 1

4
q+

n , (33)

where the inequality (e) holds by (29). The above bound (33)
gives the desired upper bound on the estimator λ̂ of λ. In a
similar manner, we can derive the desired lower bound of λ̂.

APPENDIX B
PROOF OF THEOREM 4

The proof of Theorem 4 is technically involved as it is
built upon a celebrated combinatorial argument, which is often
utilized in order to derive spectral bounds for random matri-
ces [5], [23], [27], [33], [36], [54]. We begin the proof from
a basic idea that we use to bound

‖A − E[A]‖ = sup
x∈Sn−1

|〈(A − E[A])x, x〉|. (34)

Here, we provide a brief overview of three major steps.
1) Discretization of the Unit n-Sphere S

n−1: First, we
reduce (34) to the problem of bounding the supremum
of the quadratic form 〈(A − E[A])x, x〉 over x ∈ N ,
where N is a finite subset of the unit n-sphere so that
S

n−1 can be covered by closed balls of the same radii
with centers in N . See Lemma 2 for validation of such
a manipulation. The quantity 〈(A − E[A])x, x〉 can be
decomposed as the sum of two parts. The first part cor-
responds to the pairs (i, j) ∈ [n] × [n] such that |xixj|
is small, called light couples, while another part corre-
sponds to the pairs such that |xixj| is large, the heavy
couples.

2) Managing the Light Couples: To control the contribution
of light couples at each point of N , we use the standard
Bernstein’s inequality. Then, we completes bounding the
supremum over N by employing the union bound.

3) Managing the Heavy Couples: Finally, in order to
manipulate the contribution of heavy couples, we show
that the similarity matrix A has the discrepancy prop-
erty, which essentially says that the sum of edge weights
between any two subsets of vertices does not deviate
much from its expectations. Then, we use the fact that
the discrepancy property of a given matrix ensures a
small contribution of the heavy couples to the quadratic
form.

Lemma 2: Suppose that 0 < ε < 1
2 and M is an n × n real

symmetric matrix. Then, for any ε-net N on the unit n-sphere
S

n−1, we have the bound

sup{|〈Mx, x〉| : x ∈ N }
≤ ‖M‖ ≤ 1

1 − 2ε
sup{|〈Mx, x〉| : x ∈ N }. (35)

The detailed proof of Lemma 2 is deferred to Appendix C-
A. On the other hand, some volumetric arguments yield the
following result.

Lemma 3 ([63, Corollary 4.2.13]; [27, Lemma 6.8]): Let
E ⊂ S

n−1 be a subset of the unit n-sphere and ε > 0. Then,
there exists an ε-net N of E such that |N | ≤ (1 + 2

ε
)n.

Now, we take ε = 1
4 and apply Lemma 3. It guarantees the

existence of an 1
4 -net N of S

n−1 with |N | ≤ 9n. Also, the
following inequality holds due to Lemma 2:

‖A − E[A]‖ ≤ 2 sup
{∣∣∣x�(A − E[A])x

∣∣∣ : x ∈ N
}
. (36)

Thus, it suffices to upper-bound the RHS of (36). Before we
elaborate the bounding argument of the RHS, we delineate a
key step in the Friedman-Kahn-Szemerédi argument, which is
the separation of x�Ax = ∑n

i=1
∑n

j=1 xixjAij into two pieces.

First, we write θn := (n−2
d−2

)
μn ≥ maxi,j∈[n] E[Aij]. Given any

x ∈ S
n−1, the light couples and the heavy couples of nodes

are given by

L(x) :=
{

(i, j) ∈ [n] × [n] :
∣∣xixj

∣∣ ≤
√

θn

n

}
and

H(x) := ([n] × [n]) \ L(x),

respectively, and the n × n real matrices L(x) and H(x) are
given by [L(x)]ij = xixj if (i, j) ∈ L(x); 0 otherwise, and
H(x) := xx� − L(x). Fix any point x ∈ N and apply the
triangle inequality to obtain

sup
x∈N

∣∣∣x�(A − E[A])x
∣∣∣

≤ sup
x∈N

∣∣∣∣∣∣
∑

(i,j)∈L(x)

xixjAij − x�
E[A]x

∣∣∣∣∣∣︸ ︷︷ ︸
(T1)

+ sup
x∈N

∣∣∣∣∣∣
∑

(i,j)∈H(x)

xixjAij

∣∣∣∣∣∣︸ ︷︷ ︸
(T2)

. (37)
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A. Bound of (T1)

By the triangle inequality, we have

(T1) ≤ sup
x∈N

∣∣∣∣∣∣
∑

(i,j)∈L(x)

xixj
(
Aij − E[Aij]

)∣∣∣∣∣∣︸ ︷︷ ︸
(E1)

+ sup
x∈N

∣∣∣∣∣∣
∑

(i,j)∈H(x)

xixjE[Aij]

∣∣∣∣∣∣︸ ︷︷ ︸
(E2)

.

1) (E1): For every x ∈ N , we have the identity∑
(i,j)∈L(x)

xixj
(
Aij − E[Aij]

)

=
∑
e∈E

(We − E[We])

⎛
⎜⎜⎝ ∑

(i,j)∈L(x):
i �=j, {i,j}⊆e

xixj

⎞
⎟⎟⎠

︸ ︷︷ ︸
Ye

,

Then, Ye, e ∈ E , are independent and mean-zero random
variables. To apply the standard Bernstein’s inequality,
we need the following observations.

• |Ye| ≤ ∑
(i,j)∈L(x):

i �=j, {i,j}⊆e
|xixj| ≤ d2

√
θn
n from the defini-

tion of light couples.
• An upper-bound on the sum of second moments of

Ye’s can be computed as:

∑
e∈E

E[Y2
e ] =

∑
e∈E

Var[We]

⎛
⎜⎜⎝ ∑

(i,j)∈L(x):
i �=j, {i,j}⊆e

xixj

⎞
⎟⎟⎠

2

(a)≤ d2
∑
e∈E

∑
(i,j)∈[n]×[n]:
i �=j, {i,j}⊆e

E[We]x2
i x2

j

(b)≤ d2θn ·
∑

(i,j)∈[n]×[n]:i �=j

x2
i x2

j

≤ d2θn

(
n∑

i=1

x2
i

)2

= d2θn,

where the step (a) is due to Cauchy-Schwarz
inequality and the step (b) follows from the property
that We ∈ [0, 1] for all e ∈ E .

By the two-sided Bernstein’s inequality, we have

P

{∣∣∣∣∣
∑
e∈E

Ye

∣∣∣∣∣ > β1
√

nθn

}
≤ 2 exp

⎛
⎝−

1
2β2

1

d2
(

1 + β1
3

)n

⎞
⎠

for any constant β1 > 0. The union bound yields

P

{
(E1) > β1

√
nθn

}

≤ |N | · 2 exp

⎛
⎝− β2

1

2d2
(

1 + β1
3

)n

⎞
⎠

≤ 2 exp

⎧⎨
⎩
⎛
⎝2 log 3 − β2

1

2d2
(

1 + β1
3

)
⎞
⎠n

⎫⎬
⎭.

So, if we choose a constant β1 > 0 such that 2 log 3 −
β2

1

2d2(1+ β1
3 )

≤ −11, then with prob. at least 1 − 2e−11n,

we have (E1) ≤ β1
√

nθn.
2) (E2): From the definition of heavy couples, the following

inequalities hold for any x ∈ S
n−1,∣∣∣∣∣∣

∑
(i,j)∈H(x)

xixjE[Aij]

∣∣∣∣∣∣ ≤
∑

(i,j)∈H(x)

E[Aij]
x2

i x2
j∣∣xixj
∣∣

≤ √
nθn

∑
(i,j)∈H(x)

x2
i x2

j ≤ √
nθn.

Hence, it’s clear that

(E2) = sup
x∈N

∣∣∣∣∣∣
∑

(i,j)∈H(x)

xixjE[Aij]

∣∣∣∣∣∣ ≤ √
nθn.

By combining above two bounds together, we can ensure
that with probability exceeding 1 − 2n−11,

(T1) ≤ (E1) + (E2) ≤ (β1 + 1)
√

nθn. (38)

B. Bound of (T2)

Before we elaborate the bounding argument of (T2), we
organize some preliminaries.

• Let h : (−1,∞) → R be a function defined by h(x) :=
(1 + x) log(1 + x) − x.

• Given any two matrices A, B ∈ R
m×n, the Hadamard

product A ◦ B of A and B is defined as an m × n matrix
with entries [A ◦ B]ij = AijBij for i ∈ [m] and j ∈ [n].

• For any m×n matrix M and S ⊂ [m], T ⊂ [n], we define
eM(S, T) := ∑

i∈S
∑

j∈T Mij.
• For any matrix Q ∈ R

n×n, we define fQ:Rn×n → R by
fQ(X) := 〈Q, X〉 = ∑

i,j∈[n] QijXij.
Now, we summarize some concentration properties of ran-

dom symmetric matrices that are used in the celebrated
Friedman-Kahn-Szemerédi argument.

Definition 4 (Uniform Upper Tail Property [27]): Let M be
an n × n random symmetric matrix with non-negative entries.
With the linear map fQ : Rn×n → R defined above, we write

μ := E
[
fQ(M)

] = fQ(E[M]);
σ̃ 2 := E

[
fQ◦Q(M)

] = fQ◦Q(E[M]).

The matrix M is said to have the uniform upper tail property
UUTP(c0, γ0) with parameters c0 > 0 and γ0 ≥ 0 if the fol-
lowing holds: for any a, t > 0 and n × n symmetric matrix Q
with Qij ∈ [0, a], ∀i, j ∈ [n], we have

P
{
fQ(M) − μ ≥ γ0μ + t

} ≤ exp

{
−c0

σ̃ 2

a2
h
( at

σ̃ 2

)}
.

Definition 5 (Discrepancy Property [27], [33]): Let M be
an n × n real matrix with non-negative entries. We say that M
obeys the discrepancy property DP(δ, κ1, κ2) with parameters
δ > 0, κ1 > 0 and κ2 ≥ 0 if for all non-empty S, T ⊆ [n], at
least one of the following properties hold:
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1) eM(S, T) ≤ κ1δ · |S||T|;
2) eM(S, T) log eM(S,T)

δ·|S||T| ≤ κ2(|S| ∨ |T|) log en
|S|∨|T| .

The following lemma says the uniform upper tail property
of a real symmetric random matrix whose entries are non-
negative implies the discrepancy property w.h.p.

Lemma 4 ([27, Lemma 6.4]): Let M be an n × n sym-
metric random matrix with non-negative entries. Suppose that
E[Mij] ≤ δ, ∀i, j ∈ [n] for some δ > 0 and M obeys
the UUTP(c0, γ0) for some c0 > 0, γ0 ≥ 0. Then, for
any K > 0, M satisfies the DP(δ, κ1, κ2) with probability at
least 1 − n−K , where κ1 = κ1(c0, γ0, K) := e2(1 + γ0)

2 and
κ2 = κ2(c0, γ0, K) := 4

c0
(1 + γ0)(K + 4).

Due to the ensuing result, whenever the similarity matrix A
has the discrepancy property, we can show that the contribution
of the heavy couples to (37) is not significant.

Lemma 5 ([27, Lemma 6.6]): Let M be an n × n symmet-
ric matrix with non-negative entries such that

∑n
j=1 Mij ≤ λ,

∀i ∈ [n] and
∑n

i=1 Mij ≤ λ, ∀j ∈ [n]. Suppose M obeys the
DP(δ, κ1, κ2) with δ = Cλ

n , for some constants C, κ1 > 0 and
κ2 ≥ 0. Then for any x ∈ S

n−1,

∣∣fH(x)(M)
∣∣ =

∣∣∣∣∣∣
∑

(i,j)∈H(x)

xixjMij

∣∣∣∣∣∣ ≤ σ(C, κ1, κ2)
√

λ,

where σ(C, κ1, κ2) := 64κ2(1 + 2
κ1 log κ1

) + 32C(1 + κ1) + 16.
We claim that (T2) = supx∈N |fH(x)(A)| = O(

√
nθn) with

probability at least 1 − 2n−11. Its proof consists of two main
stages, which we elaborate below.

1) The Similarity Matrix A Obeys the Uniform Upper Tail
Property: First, we fix any a, t > 0 and any n × n symmetric
matrix Q with entries Qij ∈ [0, a] for all i, j. Recall that μQ :=
E[fQ(A)] and σ̃ 2

Q := E[fQ◦Q(A)]. Then, we get

fQ(A) − μQ =
∑

i,j∈[n]:i �=j

Qij
(
Aij − E

[
Aij
])

=
∑
e∈E

(We − E[We]) ·
⎛
⎝ ∑

i,j∈e:i �=j

Qij

⎞
⎠

︸ ︷︷ ︸
Ze

.

Note that Ze, e ∈ E , are independent and mean-zero. We then
use the Bennett’s inequality on the sum

∑
e∈E Ze by involving

the following preliminary calculations:
• |Ze| ≤ ∑

i,j∈e:i �=j Qij ≤ d2a for all e ∈ E .
• Let σ 2

Q := ∑
e∈E E[Z2

e ]. Then, we obtain the bound

σ 2
Q =

∑
e∈E

⎛
⎝ ∑

i,j∈e:i �=j

Qij

⎞
⎠

2

Var[We]

(c)≤
∑
e∈E

⎛
⎝ ∑

i,j∈e:i �=j

Q2
ij

⎞
⎠
⎛
⎝ ∑

i,j∈e:i �=j

1

⎞
⎠Var[We]

(d)≤ d2
∑
e∈E

⎛
⎝ ∑

i,j∈e:i �=j

Q2
ij

⎞
⎠E[We]

= d2
∑

i,j∈[n]:i �=j

Q2
ij

⎛
⎝ ∑

e∈E :{i,j}⊆e

E[We]

⎞
⎠ = d2 · σ̃ 2

Q,

(39)

where the step (c) is due to the Cauchy-Schwarz inequal-
ity and (d) comes from the property We ∈ [0, 1],
∀e ∈ E .

The Bennett’s inequality implies that for any γ0 ≥ 0, we
have

P
{
fQ(A) − μQ ≥ γ0μQ + t

}
≤ exp

[
− σ 2

Q(
d2a
)2 h

(
d2a

σ 2
Q

(
γ0μQ + t

))]
. (40)

Meanwhile, the following bound holds for any γ0 ≥ 0,

σ 2
Q(

d2a
)2 h

(
d2a

σ 2
Q

(
γ0μQ + t

)) (e)≥ σ 2
Q(

d2a
)2 h

(
d2a

σ 2
Q

t

)

(f)≥ σ̃ 2
Q

d2a2
h

(
at

σ̃ 2
Q

)
, (41)

where the step (e) holds by the observation that the function h
is non-decreasing on [0,∞) and (f) attributes to the fact that
for fixed a, t > 0, the function λ ∈ (0,∞) �→ λ

d4a2 h( d2a
λ

t)
is non-increasing and (39). Combining the inequalities (40)
and (41) together gives the bound

P
{
fQ(A) − μQ ≥ γ0μQ + t

} ≤ exp

[
− 1

d2
· σ̃ 2

Q

a2
h

(
at

σ̃ 2
Q

)]
,

which implies the UUTP( 1
d2 , γ0) of the similarity matrix A

for every γ0 ≥ 0. From now on, we set γ0 = 1.
2) All Row and Column Sums of A is of order O(nθn)

w.h.p.: Now, we will show that max{∑n
i=1 Aij : j ∈ [n]} =

O(nθn) w.h.p. We fix any j ∈ [n] and observe that

n∑
i=1

Aij =
∑

i∈[n]\{j}

⎛
⎝ ∑

e∈E :{i,j}⊆e

We

⎞
⎠

=
∑
e∈Ej

⎛
⎝ ∑

i∈e\{j}
We

⎞
⎠ = (d − 1)

∑
e∈Ej

We,

where Ej := {e ∈ E :j ∈ e}. Translating both sides gives

n∑
i=1

(
Aij − E[Aij]

) = (d − 1)
∑
e∈Ej

(We − E[We]).

Here, we remark that
• |We − E[We]| ≤ 1 for all e ∈ Ej.
• We have the bound∑

e∈Ej

E[(We − E[We])2]
(g)≤
∑
e∈Ej

E[We]

≤ μn · ∣∣Ej
∣∣ = nθn

d − 1
,

where (g) makes use of the property We ∈ [0, 1], ∀e ∈ Ej.
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Then, the one-sided Bernstein’s inequality yields

P

{
n∑

i=1

(
Aij − E[Aij]

)
> (d − 1)β2 · nθn

}

≤ exp

(
−

1
2β2

2
β2
3 + 1

d−1

nθn

)
(42)

for any constant β2 > 0. Since nθn ≥ α log n for every n ∈ N,
the inequality (42) reduces to

P

{
n∑

i=1

(
Aij − E[Aij]

)
> (d − 1)β2 · nθn

}

≤ exp

(
−

1
2αβ2

2
β2
3 + 1

d−1

log n

)
.

By taking β2 > 0 with 1
2αβ2

2 ≥ 12(
β2
3 + 1

d−1 ), one has

n∑
i=1

(
Aij − E

[
Aij
]) ≤ (d − 1)β2 · nθn

with probability exceeding 1 − n−12. Consequently, we have
n∑

i=1

Aij =
n∑

i=1

(
Aij − E[Aij]

)+
n∑

i=1

E[Aij]

≤ [(d − 1)β2 + 1]nθn

with probability greater than 1 − n−12, ∀j ∈ [n]. It follows by
the union bound that with probability larger than 1 − n−11,

max

{
n∑

i=1

Aij : j ∈ [n]

}
≤ [(d − 1)β2 + 1]nθn. (43)

Due to Lemma 4 and the uniform upper tail property of A,
the similarity matrix A has the DP(θn, κ1, κ2) with prob. at
least 1 − n−11, where κ1 = 4e2 and κ2 = 120d2. Note that the
absolute constant β2 > 0 depends only on α and d. Now, let E1
be the event that A satisfies the DP(θn, κ1, κ2) and E2 denote
the event that A obeys the bound (43) on row and column
sums. Notice that P{E1 ∩ E2} ≥ 1 − 2n−11. By employing
Lemma 5 on the event E1 ∩ E2 with parameters λ = [(d −
1)β2 + 1]nθn, δ = θn, C = [(d − 1)β2 + 1]−1, κ1 = 4e2, and
κ2 = 120d2, it proves our claim about (T2):

(T2) = sup
x∈N

∣∣fH(x)(A)
∣∣ ≤ σ

√
[(d − 1)β2 + 1]nθn, (44)

with probability higher than 1 − 2n−11, where σ is specified
as σ = 7680d2(1 + 1

4e2(1+log 2)
) + 32

(d−1)β2+1 (1 + 4e2) + 16.
By applying the union bound together with (38) and (44), with
probability at least 1 − 4n−11,

sup
x∈N

∣∣∣x�(A − E[A])x
∣∣∣

≤
[
1 + β1 + σ

√
((d − 1)β2 + 1)

]√
nθn.

Finally, the bound (36) yields with prob. exceeding 1−4n−11,

‖A − E[A]‖ ≤ 2
[
1 + β1 + σ

√
((d − 1)β2 + 1)

]
︸ ︷︷ ︸

c5

√
nθn

and note that the universal constant c5 depends only on α.

APPENDIX C
PROOF OF TECHNICAL LEMMAS

A. Proof of Lemma 1

First, we have by the triangle inequality that

‖PT(A − E[A])‖∞
≤ 3

(∥∥∥UU�(A − E[A])
∥∥∥∞ ∨

∥∥∥(A − E[A])UU�
∥∥∥∞

)
.

(45)

Owing to ‖UU�(A − E[A])‖∞ = ‖(A − E[A])UU�‖∞, it
suffices to derive a bound on ‖UU�(A − E[A])‖∞.

Suppose that the node i ∈ [n] belongs to the ath community,
i.e., �∗(i) = a. Then, for each j ∈ [n], the (i, j)th entry of
UU�(A − E[A]) can be expressed as[

UU�(A − E[A])
]

ij

= 1

sa

∑
l∈C∗

a\{j}

(
Alj − E[Alj]

)

= 1

sa

∑
l∈C∗

a\{j}

⎡
⎣ ∑

e∈E :{l,j}⊆e

(We − E[We])

⎤
⎦

= 1

sa

∑
e∈Ea

j

∣∣(e ∩ C∗
a

) \ {j}∣∣ · (We − E[We])︸ ︷︷ ︸
Ve

,

where Ea
j := {e ∈ E : j ∈ e, (e ∩ C∗

a) \ {j} �= ∅} for a ∈ [k]
and j ∈ [n]. The random variables Ve, e ∈ Ea

j , are independent
and mean-zero. We can make some remarkable observations:

• |Ve| ≤ d − 1 for all e ∈ Ea
j .

• The sum of second moments of Ve’s is bounded by:∑
e∈Ea

j

E[V2
e ]

(a)≤ (d − 1)2
∑
e∈Ea

j

Var[We]

(b)≤ (d − 1)2
∑
e∈Ea

j

E[We]

(c)≤ (d − 1)2
∑

l∈C∗
a\{j}

⎛
⎝ ∑

e∈E :{l,j}⊆e

E[We]

⎞
⎠

≤ (d − 1)2sa

(
n − 2

d − 2

)
pn︸ ︷︷ ︸

νn

(46)

where the step (a) attributes to the property V2
e ≤ (d −

1)2(We − E[We])2 for every e ∈ Ea
j , (b) is due to the

property that We ∈ [0, 1], ∀e ∈ E , and the step (c) is
obtained from the set relation

Ea
j = {

e ∈ E : j ∈ e, e ∩ (C∗
a \ {j}) �= ∅

}
=

⋃
l∈C∗

a\{j}
{e ∈ E : {l, j} ⊆ e}.

The two-sided Bernstein’s inequality gives with probability at
least 1 − 2n−13,

sa

∣∣∣∣[UU�(A − E[A])
]

ij

∣∣∣∣
(d)≤ 9(d − 1) log n + (d − 1)

√
26saνn log n,
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where the step (d) is due to the bound (46). Thus, it follows
that for every i, j ∈ [n],

∣∣∣∣[UU�(A − E[A])
]

ij

∣∣∣∣ ≤ (d − 1)

(
9 log n

smin
+
√

26νn log n

smin

)

(47)

with probability exceeding 1−2n−13. It’s straightforward from
the condition (14) that

(log n)2 ≤ 1

c1
νnsmin log n. (48)

Employing the inequality (48) to (47), one has with probability
greater than 1 − 2n−13,∣∣∣∣[UU�(A − E[A])

]
ij

∣∣∣∣
≤ (d − 1)

(
9√
c1

+ √
26

)√
νn log n

smin

(e)≤ (d − 1)

(
9

c1
+
√

26

c1

)(
smin − 2

d − 2

)
(pn − qn),

where (e) is due to the condition (14). From the union bound,
with probability at least 1 − 2n−11,∥∥∥UU�(A − E[A])

∥∥∥∞

≤ (d − 1)

(
9

c1
+
√

26

c1

)(
smin − 2

d − 2

)
(pn − qn). (49)

Finally, putting (45) and (49) together completes the proof.

B. Proof of Lemma 2

The spectral norm of an n × n real symmetric matrix can
be written as ‖M‖ = supx∈Sn−1 |〈Mx, x〉|. So, the lower bound
part of the inequality (35) is obvious. Now, it remains to show
the upper bound part of (35). We fix any point x ∈ S

n−1 and
take a x0 ∈ N such that ‖x − x0‖2 ≤ ε. It follows by the
triangle inequality that

|〈Mx, x〉| − |〈Mx0, x0〉|
≤ |〈Mx, x〉 − 〈Mx0, x0〉|
= |〈Mx, x − x0〉 + 〈M(x − x0), x0〉|
≤ ‖M‖ · ‖x‖2 · ‖x − x0‖2 + ‖M‖ · ‖x − x0‖2 · ‖x0‖2

≤ 2ε‖M‖.
Thus, we obtain that for any x ∈ S

n−1,

|〈Mx, x〉| − 2ε‖M‖ ≤ sup{|〈My, y〉| : y ∈ N }. (50)

By taking supremum to left-hand side of (50) over x ∈ S
n−1,

we may conclude that

(1 − 2ε)‖M‖ ≤ sup{|〈My, y〉| : y ∈ N }. (51)

Dividing 1 − 2ε from both sides of (51), we get the upper
bound on the spectral norm ‖M‖ of an n × n real symmetric
matrix M. This completes the proof of Lemma 2.
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