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Abstract

Distribution shift between the training and test domains poses a key challenge for modern machine
learning. An extensively studied instance is the covariate shift, where the marginal distribution of
covariates differs across domains but the conditional distribution of outcome remains the same. The
doubly-robust (DR) estimator, recently introduced by Kato et al. (2023), combines the density ratio
estimation with a pilot regression model and manifests asymptotic normality and \/n-consistency,
even when the pilot estimates converge slowly. However, the prior arts has focused exclusively on
establishing asymptotic results and has left open the question of non-asymptotic guarantees for the
DR estimator.

This paper provides the first non-asymptotic learning bounds for the DR covariate shift adap-
tation. Our contributions are two-fold: (i) We establish structure-agnostic high-probability upper
bounds on the excess target risk of the DR estimator that depend only on the L2-errors of the pilot
estimates and the Rademacher complexity of the model class, without assuming specific procedures
to obtain the pilot estimate, and (ii) under well-specified parametric models, we analyze the DR co-
variate shift adaptation based on modern techniques for non-asymptotic analysis of MLE, whose
key terms governed by the Fisher information mismatch between the source and target distributions.
Together, these findings bridge asymptotic efficiency results and a finite-sample out-of-distribution
generalization bounds, providing a comprehensive theoretical underpinnings for the DR covariate
shift adaptation.

Keywords: covariate shift, empirical risk minimization, importance-weighting, doubly-robust es-
timator

1. Introduction

Classical supervised learning assumes that the training and test data are drawn from the same distri-
bution (Vapnik, 2013; Gyorfi et al., 2002). In practice, this assumption is rarely met. For instance,
credit models are trained on approved customers but deployed on rejected applicants; medical imag-
ing data vary across hospitals due to differences in equipment and protocols (Koh et al., 2021; Guan
and Liu, 2021); and in natural language processing, labeled corpora such as the Wall Street Journal,
differ sharply from domains like arXiv (Jiang and Zhai, 2007). For all these cases, distribution shift
between training and test domains undermines predictive performance.

An important particular case of such a distribution shift is the covariate shift (Shimodaira, 2000;
Quifionero-Candela et al., 2008; Pan and Yang, 2009), where the marginal distribution of covariates
X varies across domains while the conditional distribution of Y| X remains the same. Covariate shift
is well-documented in healthcare (Wei et al., 2015; Hajiramezanali et al., 2018), image classification
(Saenko et al., 2010), remote sensing Tuia et al. (2011), sentiment analysis Blitzer et al. (2007), and
speech and language processing (Yamada et al., 2009; Hassan et al., 2013; Fei and Liu, 2015).

The covariate shift adaptation problem assumes access to labeled samples from a source domain
and unlabeled covariates from a target domain, with the goal of learning a predictor with a desirable
performance under the target distribution. This problem has been central to the literature of transfer
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learning and domain adaptation (Sugiyama et al., 2007a,b; Sugiyama and Kawanabe, 2012; Pan and
Yang, 2009; Kato et al., 2023), especially when the target labels are scarce or costly to obtain.

A core difficulty lies in estimating the covariate density ratio between the source and target do-
mains. The standard approach — plugging-in an estimated covariate density ratio into an importance-
weighted empirical risk minimization (Sugiyama et al., 2007a,b, 2008; Reddi et al., 2015) — turns
out to be highly sensitive to the estimation errors of the density ratio and performs poorly unless the
estimator converges at nearly parametric rates. To address this, Kato et al. (2023) proposes a doubly-
robust (DR) estimator, which augments the importance-weighting with a pilot regression model and
leverages double machine learning techniques (Chernozhukov et al., 2017, 2018, 2022, 2023; Foster
and Syrgkanis, 2023). Their results establish the asymptotic normality and /n-consistency of their
DR estimator under parametric models, even when the pilot estimates converge slowly.

Yet, the literature of covariate shift adaptation has centered exclusively on achieving asymptotic
results. It remains unclear how the DR covariate shift adaptation performs in finite-sample regimes.
This paper aims to close this gap. Our contributions can be summarized as follows:

(i) Structure-agnostic guarantees: We first derive the first non-asymptotic upper bounds on the
excess target risk for the DR estimator, depending only on a product of the statistical rates of
convergence of the pilot estimates, without assumptions on how they are obtained.

(i) Fast rates for parametric models: By studying the DR estimator through the lens of modern
non-asymptotic theory of maximum likelihood estimation (MLE), we prove that the estimator
achieves a rate of convergence of the order O (1/n) under covariate shift.

Together, these results bridge asymptotic efficiency results and a finite-sample out-of-distribution
(OOD) generalization bound, providing a comprehensive theoretical underpinning of the DR covari-
ate shift adaptation.

1.1. Related works

Let us take a moment to discuss subsets of related works in covariate shift, doubly-robust estimation,
and structure-agnostic estimation framework.

Covariate shift The study of covariate shift can be dated back to the seminal paper by Shimodaira
(2000). This work investigates the impact of covariate shift under parametric models with the vanilla
MLE and proposes an importance-weighting (IW) method, which has a prominent improvement if
the underlying regression model is mis-specified. It also establishes the asymptotic normality for a
weighted version of MLE under covariate shift, but no finite-sample guarantees are provided. Later,
Sugiyama and Miiller (2005) further extend this work by studying an unbiased estimator under the
L?-generalization error. Motivated by these fundamental works, there has been a flurry of follow-up
studies for parametric covariate shift. Mousavi Kalan et al. (2020) introduces a statistical minimax
framework and gives lower bounds for out-of-distribution generalization under the regression mod-
els of linear and one-hidden layer neural networks. Lei et al. (2021) takes a closer investigation on
the minimax optimal estimator for fixed-design linear regression under covariate shift. Zhang et al.
(2022) studies linear models under covariate shift where the learner has access to a small amount of
target labels. In contrast, this paper focuses on the proble of covariate shift where the learner has no
access to target labels.

Beyond the cases of parametric covariate shift, Cortes et al. (2010) investigate the IW estimator
under the framework of statistical learning and provide a non-asymptotic upper bound on the excess
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target risk for the IW estimator. Also, there has been a line of recent works on well-specified non-
parametric models under covariate shift. Kpotufe and Martinet (2021) consider the non-parametric
classification problem over the class of Holder continuous functions and provide a new fine-grained
similarity measure. Within a focus on the class of Holder continuous functions, Pathak et al. (2022)
introduce a novel measure of distribution mismatch between the source and target domains. Under
the setting of reproducing kernel Hilbert space (RKHS), Ma et al. (2023); Gogolashvili et al. (2023)
establish the optimal learning rates of kernel ridge regression (KRR) estimation. In particular, Ma
et al. (2023) prove that KRR estimator with a carefully selected regularization parameter is miniax
optimal if the covariate density ratio is uniformly bounded, and a re-weighting version of the KRR
estimator using truncated covariate density ratios is minimax-optimal if the covariate density ratio
has a finite second-order moment. On the other hand, Wang (2023) suggests the strategy of learning
a predictive model built upon pseudo-labels. As a final remark, over-parameterized models, such as
high-dimensional models and classes of neural networks, under covariate shift has drawn increasing
attention from the researchers (Byrd and Lipton, 2019; Hendrycks and Dietterich, 2019; Hendrycks
et al., 2021; Tripuraneni et al., 2021)).

Doubly-robust (DR) estimation Doubly-robust (DR) estimation combines an outcome regression
with a model for treatment or selection (e.g., the propensity score), guaranteeing its consistency if
at least one is correctly specified. Its foundations lie in the seminal paper by Robins et al. (1994) on
semi-parametric theory and influence functions, and were formalized for applications by Bang and
Robins (2005). Some implementations include the augmented inverse propensity weighting (AIPW)
(Robins et al., 1994; Robins and Rotnitzky, 1995; Bang and Robins, 2005) and the target maximum
likelihood estimation (TMLE) (Van Der Laan and Rubin, 2006; Van der Laan et al., 2011), both of
which leverage influence functions to correct bias. A corpus of recent studies integrate modern ML
techniques for flexible nuisance estimation by using Neyman orthogonalization and sample splitting
(Chernozhukov et al., 2017, 2018; Van der Laan and Rose, 2018; Kennedy, 2024) for retaining valid
inference. The DR estimation framework has expanded to settings such as difference-in-differences
(Sant’ Anna and Zhao, 2020; Ning et al., 2020), instrumental variables (Okui et al., 2012; Lee et al.,
2023), and censored data (Bai et al., 2013). While the DR methods provide robustness and potential
efficiency, they require careful handling of finite-sample bias (Kang and Schafer, 2007; Funk et al.,
2011), near-positivity violations (Cole and Herndn, 2008), and model diagnostics (Bang and Robins,
2005; Robins et al., 1994), since the correctness of at least one nuisance estimate remains crucial.

Structure-agnostic estimation The structure-agnostic estimation framework stands for a class of
statistical methods for estimating functionals or treatment effects without assuming any parametric
or structural models for the underlying data generating process. Balakrishnan et al. (2023) establish
fundamental limits for such functional estimation, characterizing the optimal rates achievable when
only minimal assumptions — such as smoothness or boundedness — are imposed. Jin and Syrgkanis
(2024) that the DR estimators both for the average treatment effect (ATE) and the average treatment
effect on the treated (ATT) attain the minimax optimal rates under the structure-agnostic framework.
Their findings underscore the effectiveness of the DR learning in causal inference, particularly when
relying on flexible ML methods for nuisance estimation. Jin et al. (2025) further study the sensitivity
of structure-agnostic estimation procedures to noise, highlighint cases where standard estimators fail
to achieve normality or efficiency. Lastly, Bonvini et al. (2024) extend the framework by formalizing
the DR inference under smoothness conditions. Collectively, these works aim to construct a rigorous



framework for statistical estimation and inference that minimizes reliance on structural assumptions
while achieving near-optimal statistical guarantees.

2. Problem formulation

Let X denote the covariate space (feature space). We consider the source distribution P € A (X x R)
and the farget distribution Q € A (X x R). Also, let Px € A(X) and Qx € A(X) denote by the
marginal distributions of X under P’ and Q, respectively. We further define Py x : X — A(R) and
Qyx : X = A(R) to be the conditional laws of Y given X under P and Q:

Pyix((l2) =P €-[X=2), Qyx(l2)=QY € [X=2z).
Assumption 1 (Covariate shift model) For every z € X,
Ep[Y|X =z]=Eg[Y|X =z]. (1)
Thus, the two distributions share the same Bayes regression function,
) =EpY|X=z]|=Eg[Y|X=2], zeX

Here, we emphasize that Assumption 1 does not require Py x = Qy|x; only their Bayes regression
functions must coincide. In fact, this assumption is weaker compared to the classical covariate shift
model (Shimodaira, 2000), which posits a full equality of the conditional distributions.

Observational data. We observe np labeled samples from the source distribution PP,

of, = (O? = (XFYP) e [n]p]) ~ P77

l:np

and ng unlabeled target covariates,
. ®
X(%n@ = (X;@ HWVAS [TL@]) ~ QXTLQ-

Hence, the labels are available only in the source domain.

Risk and excess risk. Given a function class 7 C (X — R), define the p-risk R, : F — R by

Ru(f) = Epeyyn [V = FX)P], ne AXxR).

For p € A (X x R), let f;; € argmin {R,(f) : f € F} denote a pu-risk minimizer over the function
class F. The excess p-risk is then defined by

Ef) =Ru(f)=Ru(f}), feF 2)

Goal: covariate shift adaptation. Our objective is to construct an estimator f € F that achieves

N

small excess Q-risk Eg( f) with high probability.
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Covariate density ratio. A central quantity in the study of covariate shift is the covariate density
ratio between the source and target distributions. We assume that the marginal distributions Px and
Qx are absolutely continuous with respect to a o-finite reference measure px on X. Let

dP d
py = —~:X >R, and qX::&:X—)R_,_
dux dpx

denote their respective densities with respect to px. The covariate density ratio is then defined as

which is assumed to be finite everywhere throughout this paper.

3. Doubly-robust (DR) covariate shift adaptation

Re-weighting with respect to the source distribution P yields an alternative expression of the Q-risk
as the p*-weighted P-risk:

Ro(f) = Epeyyer [0 (OY = f(X)P], feF. 3

The importance-weighting (IW) estimator (Shimodaira, 2000) is obtained by minimizing the empir-
ical variant of the p*-weighted P-risk (3) over F. Its key limitation is the reliance on the knowledge
of the unknown covariate density ratio p* : X — R : plug-in versions of the IW estimator using
an estimate p : X — R for the covariate density ratio p* might have high variance and degrade its
performance unless the estimation of the covariate density ratio is sufficiently accurate.

The doubly-robust (DR) covariate shift adaptation (Kato et al., 2023) augments the IW method
with a pilot regression model, and then subtracts a squared-error correction term to cancel the lead-
ing error term incurred by the density ratio estimation. Given any pilot estimates p : X — R and
fg : X — R for the covariate density ratio p* : X — R and the shared Bayes regression function
¥ X' — R, respectively, we define the DR empirical risk Rpr: F > R by

Row(f) 1= 53 0(87) [{37 = 530)} = (o) - 1)}

s LS ) - ) N
nQ ‘= J
and the DR estimator as

for € argmin {ﬁDR( f)ife f} . )

Intuitively, the pilot regression model terms fo makes the risk orthogonal to the first-order errors in
p (and vice-versa), yielding stability even when the pilot estimates converge slowly.



Structure-agnostic estimation. In this section, the pilot estimates p : X — R, and fo X—=R
are viewed as black-boxes: the analysis only requires the pilot estimates to achieve certain statistical
error rates, not how they are obtained. This structure-agnostic estimation framework (Balakrishnan
et al., 2023; Jin and Syrgkanis, 2024; Kennedy et al., 2024; Bonvini et al., 2024; Jin et al., 2025) re-
flects practice, where the nuisance estimates p and fo can be obtained by leveraging diverse modern
ML methods (e.g., LASSO (Bickel et al., 2009; Wainwright, 2009), tree-based algorithms (Syrgka-
nis and Zampetakis, 2020; Wager and Athey, 2018), and deep neural nets (Chen and White, 1999;
Schmidt-Hieber, 2020)). Later, our finite-sample guarantees will be directly stated in terms of their
estimation errors.

4. Structure-agnostic learning bounds for DR covariate shift adaptation

This section aims to develop finite-sample structure-agnostic guarantees for the doubly-robust (DR)
estimator. We first state the standing assumptions, introduce the complexity measure utilized in our
analysis, and finally present a high-probability bound on the excess Q-risk of the DR estimator (5)
together with a concrete illustration based on classes of Frobenius-norm-bounded neural networks.

Throughout this section, we consider the structure-agnostic perspective that treat the given pilot
estimates (/3, fo) as black-boxes; our upper bounds depend only on their estimation errors measured
by the mean-squared error with respect to Py.

4.1. Assumptions

We begin by introducing the minimal assumptions under which our non-asymptotic analysis holds.
Assumption 2 (Well-specified model) f* € F.

Assumption 3 (Uniform boundedness) We have sup {||f||, : f € F} < 1land |Y]| < 1 almost
surely under the source distribution [P and the target distribution Q.

Assumption 4 The pilot estimates p : X — R and fo : X — R of the true covariate density ratio
p* : X' — Ry and the shared Bayes regression function f* € F, respectively, satisfy

Al < Car < 00 and HfOH < Cy < 400 ©)
oo
for some universal constants Cy;, Cyr € (0, +00).

Remark 4.1 Note that the uniform boundedness assumption ||p|| ., < Cg4: < 400 on the black-box
ML estimate p : X — R is standard for the case of the bounded ground-truth covariate density ratio
p* : X — R,. In particular, estimation procedures built upon the density ratio matching under the
Bregman divergence (Sugiyama et al., 2010, 2012) such as least-squares importance fitting (LSIF)
(Kanamori et al., 2009), kernel mean matching (KMM) (Gretton et al., 2009), kernel unconstrained
LSIF (KuLSIF) (Kanamori et al., 2012), Kullback-Leibler importance estimation procedure (KLIEP)
(Sugiyama et al., 2008), logistic regression-based density ratio estimation methods (Sugiyama et al.,
2010, 2012), and deep density ratio estimation (Kato and Teshima, 2021; Zheng et al., 2022), focus
on the minimization of a specific empirical risk over a uniformly bounded hypothesis class.
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4.2. Uniform convergence and Rademacher complexity guarantees

We now analyze the DR estimator (5) in finite-sample regimes via uniform convergence arguments.
The key complexity measure is the Rademacher complexity of the f*-shifted version of the function
class F C (X — R):

Fr={f-f":feF}C(X—=R).

We first recall the definition of the Rademacher complexity for completeness.

Definition 4.1 (Rademacher complexity) Given any function class G C (X — R), the empirical
Rademacher complexity of G with respect to n sample points X1., = (1, z2, -+ ,Z,) € X" is

1 n
n;mg(u’vi) g€ Q}

The Rademacher complexity of G with respect to a probability measure 1 € A(X) is defined by
RA(G) = Ex, ypon | Ra(@) (K1)
1o ®)
- 7 Xz : .
- ; 0ig (Xi)|:9€G H

With these preliminary notions in hand, one can state a structure-agnostic high-probability upper
bound on the excess Q-risk of the DR estimator (5) that depends only on the L? (X, Px)-errors of
the pilot estimates and the Rademacher complexity of /* under Px and Qx.

: (M

R(G) (X1:m) 1= Eg,.,, ~Unif({£1}") [SUP {

- E(Xl:n,a'lzn)N/J®n®Ul’lif({:|:1}n) lsup {

Theorem 4.1 (Structure-agnostic upper bound I of the DR estimator) With Assumptions 1-4,
the doubly-robust (DR) estimator (5) achieves the Q-estimation error

ex (o) = Exvan [{ion(0) - 1000}

<4p =P N2y - Hfo —f L2(X,Px)

3\ /C 1
+12(2 4 Cyr) log <5> <n(;; + n@>

)
+4 (14 Ca) (24 C) 4/ 2]og (2) (\/pr + \/jT@>
x * Qx *
+8(1+ Car) (24 Ci) 4 [log <§) (RE% ) - Rn% )>

+ 8Car (14 Cit) Ry (F7) +8 (3 + Cr) Ry (F7)
with probability at least 1 — § under the probability measure P®"* ® Q?}nQ.

The proof of Theorem 4.1 is deferred to Appendix B.2. Let us make use of the notation

L2(X,Px)

Brryi= 16— p'llpaeey)  and Erepi= | fo— f

The leading bias term in (9) can be written as the product Err,, - Erry. This observation leads us to
the following two concrete implications:



(I1) Having just one good pilot estimate suffices. Assuming either Err, = o(1) or Erry = o(1)
asmin {np, ng} — oo and the remaining term is bounded, we have Err,-Erry = o(1). Hence,
the DR estimator is still consistent even when one of the pilot estimates is inaccurate; this is
the finite-sample manifestation of the double robustness phenomenon (Robins and Rotnitzky,
1995; Robins et al., 2008): the error of the one-step corrected estimators is upper bounded by
a product of estimation errors of the underlying nuisance components. To put it another way,
the DR covariate shift adaptation allows us to reduce the bias incurred by the estimation error
of the covariate density ratio through the aforementioned double robustness property.

(12) Rate multiplication. Suppose Err, = O (n=®) and Erry = O (n™?) withn := min {np, ng}.
Then, their product term scales as O (n_(o“rﬁ )). In contrast, the upper bound on the excess
Q-risk of the IW estimator depends additively on Err,, and typically requires o > 1/2 to be
competitive. Thus, the DR estimator (5) outperforms the IW method whenever o« + 5 > 1/2.

Since we have trivial bounds R}X (F*) < 2 and R%f (F*) < 2, one can simplify the excess
Q-risk bound (9) in Theorem 4.1 of the DR estimator as follows: With Assumptions 1-4 in hand, it

follows that the DR estimator (5) achieves
log (3) , [log(5)
+ +
L2(X,Px) np nQ (10)

o <fDR) S o=l xey) - Hfo -/

+ R (FF) + RX (F)

with probability at least 1 — 6.

4.3. An illustration with Frobenius-norm-bounded neural networks

Let X C R™ be a bounded domain with sup {||x||, : x € X} < R for some radius R € (0, 4+00).
We also consider a collection of 1-Lipschitz activation functions {o; € (R — R) : j € N} that are
positive-homogeneous (that is, o (at) = ao(t) for every (a,t) € Ry x R), and that are applied
element-wise. We are interested in a class of real-valued neural networks of depth d € N over the
domain X C R" defined as

Ha (X; M) :={NNy(;0) € ( X—R):0 € ©(Mp)}, (11)
where @ = (W1, - W) € H;-lzl R™*™i-1 denotes the model parameter consists of d parameter
matrices with ny = 1, and the real-valued neural network of depth d NNy (+;0) : X — R is defined
to be

NNy (x;0) := Wyoq-1 (Wg_104-2 (--- 01 (W1x)---)). (12)

Here, MF : [d] — R specifies upper bounds on the Frobenius norm of the parameter matrices, and
the parameter space © (M) C H;l:l R™ *™i-1 is given by

d
O (Mp) == 0= (W1, Wy, \Wy) € [[R""": |[W;|lp < Me(j), Vj € [d]
j=1
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A key example of the above construction are ReLU networks, where every o : R — R corresponds
to applying the ReLU activation function o(-) := max {0, -} : R — R_.. With the class Hq (X; M)
in hand, we now introduce the function class of our interest. Let 7 : R — [—1, 1] be an L-Lipschitz
bounded activation function such that (0) = 0, and define

Fi={f(50):=noNNy(;0) € (X—[-1,1]): 0 € © (M)} (13)
For example, the inverse tangent activation 2 arctan(-) : R — [—1, 1] satisfies the desired proper-

ties with L = % One can show that the Rademacher complexity of the f*-shift version of (13) with

respect to any probability measure p € A(X) is of order O (%) .

Proposition 4.1 The Rademacher complexity of the f*-shifted version of the neural network class
F C (X — [-1,1]) defined as (13), F* := F —{ f*}, with respect to any given probability measure
w € A(X) is upper bounded as

o 2 SR 1
R‘;(]—")gﬁ LR(1+\/(210g2)d>j1_IlMp(j)+ log 2 :o(\/ﬁ) (14)

The proof of Proposition 4.1 can be found in Appendix B.1. With Proposition 4.1 in hand, one may
conclude that the DR estimator (5) achieves the following excess Q-risk bound when we select the
hypothesis class F C (X — [—1, 1]) of our interest as (13): with probability at least 1 — ¢, one has

i log(%)+ log (5) (15)
L2(X,Px) np nQ '

Remark 4.2 'We now turn our attention to the following approach that utilizes the double/debiased
machine learning (DML) method (Chernozhukov et al., 2017, 2018, 2022, 2023; Foster and Syrgka-

nis, 2023): We first split the observations D := (OP X9

Linpr “H1ing

2] (fDR) SUo=r ey - Hfo —f

) into two subgroups D; and Dy with
the equal size, and then we estimate the covariate density ratio p* : X — R and the common Bayes
regression function f* € F using the first subgroup D; to compute a nuisance estimate p : X — Ry
and a pilot estimate fy : X — R. Several results from the literature of density ratio estimation pro-
pose algorithms achieving || — p*|| j2x p,) = Op (min {np, nQ}fﬁ) as min {np,ng} — oo
for any constant y € (0,2) Kanamori et al. (2012); Kato and Teshima (2021). Therefore, if the pilot
estimate fy : X — R of f* € F is consistent under the source distribution P with a rate

Hfo - f*

then the high-probability bound (15) on the Q-risk for the DR estimator (5) together with the class
(13) of Frobenius-norm-bounded neural networks (constructed using the second subgroup D) gives

R log (L loo (1
&a (for) < \/ Oiﬂgé) + % Oif@é). (17)

To summarize, as long as the pilot black-box estimate fo : X — R for the Bayes regression function
f* € Fis consistent under the source distribution P with the rate of convergence (16), we are able
to enhance the pilot black-box estimate fo : X — Rof f* € F to an estimator achieving the rate of
convergence (17) even if it is not consistent under the target distribution Q.

L2(X,Px) =0p (min {np,n@}_uzly)) as min {n]p,nQ} — 00, (16)




5. Learning bounds for DR covariate shift adaptation: parametric models

This section focuses on the doubly-robust (DR) covariate shift adaptation when the underlying func-
tion class is finite-dimensional and well-specified. Our key takeaway messages are two-fold: (i) with
parametric models, fast 1/n-type rates of convergence are attainable without assuming exact knowl-
edge of the true covariate density ratio p*; and (ii) the DR estimator achieves these rates regardless
of the statistical accuracies of the pilot estimates (,5, fo).

Parametric model. Throughout this section, let us impose Assumptions 2 and 3 and then consider
a d-dimensional parameterization

F={f(:6)e (X~ [-1,1):0 €0 CR}, (18)

with the ground-truth parameter % € © such that f*(-) = f (;8") € F. Given any pilot estimates
([), fo), the DR empirical risk specialized to the parameterized model (18) is

1 &

Ro(6) = — > p(XF) {¢ (v, £(xT50)) — ¢ (fo(xF). £(xT30) ) }

n
P

| ne (19)
+ %Ze (fo(xD), 1(x7:8)),
j=1

where /(a,b) := (b — a)?. We define the DR estimator specialized to the parametric model (18) as
OpR € argmin {7/?\,DR(9) : 0 ¢ @} , fDR(-) = f (-;QDR) e F. (20)

Regularity and landscape conditions. We first make the following smoothness assumptions cus-
tomary in classical analysis of MLE (Lehmann, 1999; Le Cam, 1956; Cramér, 1999; Van der Vaart,
2000; Lehmann and Casella, 2006)

Assumption 5 (Smoothness assumptions) Suppose the parameter space © C R is star-shaped
at center 0* € O, i.e., [0,0] :={0"+X(0—-0%): A [0,1]} COforall @ € O, and

(i) Foreach z € X, the function @ € © — f (z;60) € [—1, 1] is three-times differentiable;

(ii) There exist absolute constants (b1, b2, b3) € (0, +oo)3 such that

IVof @:0)lly < b1, [[V3f (2:0)],, < b2 and[|[V3S (50)]|,, <bs D)

for every (z,0) € X x O.

Assumption 6 (Benign landscape of the DR empirical risk) For any realization (OP X(%n@)

linp>»
O™ x X"2, the DR empirical risk ﬁDR : © — R attains a unique local minimum, which is also the
global minimum.

10
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Note that Assumption 6 is satisfied, for example, if the population version of the DR empirical risk
(19) is strongly convex in a neighborhood of 8* € O, and the Hessian of the DR empirical risk (19)
uniformly concentrates on that neighborhood.

Now, we are ready to establish an improved structure-agnostic upper bound on the excess QQ-risk
of the DR estimator (20) for parametrized hypothesis classes (18), which leads to faster rates of con-
vergence. For ease of exposition, we would like to recall the classical notion of Fisher information,
which plays a role as a key quantity to measure the difficulty of parameter estimation. The p-Fisher
information matrix evaluated at @ € © is defined as

Z,(0) == E(x,y)mu [Vol (V. [ (X;0))] . 0 €0, (22)
where 1 € {P,Q} and ¢ : R x R — R is the squared error loss. Then, one can easily observe that
T, (0") i= 2Exvuy |Vof (X:67) {Vof (X;67)}7], @3)

where px (+) := pu (- x R) € A(X) refers to the covariate marginal distribution of 1 € {P,Q}. We
now present our main result of this section, whose proof is deferred to Section B.3:

Theorem 5.1 (Informal, see Theorem B.1) Consider the parametrized function class (18). Under
Assumptions 1-6, there exists an absolute constant K € (0, +00) such that with probability at least

1 — 86 under the probability measure P®™ Q?}n@,

&o (éDR> =Ex~qx [{f (X;éDR) - f*(X)}Q]

o =1 (g 24)
Trace { Zp (%) Z;' (0%) (
<18K? (14 C4)* (1 + Cip)* log (d) { “ } + & ,

o np nQ

provided that min {np,ng} > % - N*log (%) for some absolute constant & € (0, +00), where

,)

Interpretations and implications Theorem 5.1 shows that, for well-specified parametric models,
the DR estimator (20) achieves a fast and instance-dependent upper bound on the excess Q-risk that
decouples the contributions of the source and target samples to the bound:

N* = poly (d,

I@l (6%)

731 (6") T (67) I3 (6)

)
op

Trace {I]p (6")Tg" (0*)} J
: contributed by the source data, — : contributed by the target data,
np TlQ

up to logarithmic factors. Here, the trace factor Trace{Zp (6")Z, '(6%) } quantifies the Fisher infor-
mation mismatch between [P and Q, and is the only way in which covariate shift affects the leading
constant. Notably, the excess Q-risk bound in Theorem 5.1 holds without access to the true covariate
density ratio p*, and is independent of the statistical accuracies of the pilot estimates (ﬁ, fo).

We also discuss some appealing attributes of DR covariate shift adaptation and its fast 1 /n-type
convergence guarantee (24) for well-specified parametric models provided in Theorem 5.1:
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* Fast rates of convergence under covariate shift without knowing p*: The excess Q-risk bound
(24) of the DR estimator (20) matches the fast 1 /n-rate behavior, where n := min {np, ng},
known to be achievable in parametric models, yet it does so without requiring an exact knowl-
edge (or a consistent estimate) of the covariate density ratio p* : X — R,..

* Pilot-agnostic tightness of the rates: The rate of convergence for the DR estimator (20) from
the excess Q-risk bound (24) does not degrade with the quality of pilot estimates ([), fo); any
black-box pilot estimates suffice.

* No boundedness assumption on the covariate density ratio: Unlike the prior works on covari-
ate shift (e.g., (Cortes et al., 2010; Ma et al., 2023)), we make no boundedness assumptions
on the covariate density ratio p*, broadening applicability of our results.

It would be worth pointing out the trace factor Trace{Ip (9*)2@ ! (0*) }, which is different from
the trace factors appeared in the excess Q-risk bounds for the vanilla MLE and the weighted MLE
of (Ge et al., 2024). However, on the closer look, (Ge et al., 2024) assumes the boundedness of the
covariate density ratio, under which their excess Q-risk bound for the weighted MLE (see Theorem
5.2 therein) can be translated to the same trace factor as in the bound (24) of Theorem 5.1.

6. Discussion

This paper establishes the first finite-sample guarantees for doubly-robust (DR) covariate shift adap-
tation, complementing the existing asymptotic analysis (Kato et al., 2023) and clarifying the role of
pilot estimates, sample allocation, and parametric modeling for the Bayes regression function. The
structure-agnostic upper bound (9) of the DR estimator (5) shows that the leading bias term scales as
the product of statistical error rates of the pilot estimates, providing a non-asymptotic demonstration
of the celebrated double robustness phenomenon (Robins and Rotnitzky, 1995; Robins et al., 2008):
one consistent pilot estimate suffices to obtain the consistency of the one-step corrected estimators,
and the joint improvement yields multiplicative gains. The decomposition of the DR empirical risk
(4) highlights how the labeled source samples primarily benefit the pilot regression model, while the
unlabeled target covariates strengthen the effect of the pilot estimate of the covariate density ratio,
offering practical guidance on data collection under budget constraints in the target domain. Within
well-specified parametric models, our analysis of the DR estimator (20) via modern techniques for
finite-sample analysis of MLE yields a non-asymptotic fast 1/n-type convergence guarantee, which
is independent of the statistical accuracies of pilot black-box estimates. In this result, the difficulty
of learning a predictive model under covariate shift is quantified by the Fisher information mismatch
between the source and target distributions. Together, the findings in this paper demonstrate that the
DR covariate shift adaptation combines asymptotic efficiency results with strong finite-sample out-
of-distribution generalization bounds.
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Appendix A. Preliminary facts

This section is devoted to collect a couple of useful preliminary facts for our analysis. The following
contraction lemma is a modified version of Theorem 4.12 of Ledoux and Talagrand (2013) that was
established in Duchi (2009). See Theorem 7 therein for the proof of Lemma 1.

Lemma 1 (The Ledoux-Talagrand contraction principle) Let f : R, — R be a non-decreasing
convex function, and ¢; : R — R, i € [n], are L-Lipschitz continuous functions such that ¢;(0) = 0.

Then for any T C R", we have
— sup oi0; ( .
{ 2 tl neT Z o } ) ]

In particular, if we let f(t) =t fort € Ry, then we obtain
] . (25

Z oit;

Eg ., ~Unif({£1}")

o-1:n~Unif({i1}”)[ ( © sup

t1.,€T

nzaz(bz i nzaztz

< 2LEg,,, ~Unif({£1}") [ Sub

Eq, ., ~Unif({£1}") | Sup
t1 nET

lnET

The following is a well-known standard deviation inequality for controlling the maxima of empirical
processes; see Theorem 1.1 in Klein and Rio (2005).

Lemma 2 (Classical Talagrand’s concentration inequality) Let F C (X — [—B, B]) be a func-
tion class and X1, = (X1, Xo,- -, Xp,) ~ P®" for some P € A(X). We define

Z:zsup{(@—P) (f) ::;Zf(Xi)—EXMP’[f(X)]5f(')€F}=
i=1

and v? := sup {Varx.p [f(X)] : f € F}, where P:= LS 1 6x, € A(X) denotes the empirical
measure for the n samples X1., ~ P®™. Then, it holds for every x € R that

2
P{Z > E[Z] + 2} < exp (—4BE[Z] f;qﬂ - 3B$> . (26)

In particular, for any given 6 € (0, 1), it holds with probability at least 1 — 6 that

7wz < B8 ) +2\/BE[Z]10g (3) +\/2v210g (5) 27)

n n n

under the probability measure P®".

Another key technical result is the following generic version of the Bernstein inequality for random
vectors, which plays a significant role in establishing concentration properties of the gradient of the
DR empirical risk (19) with respect to the parameter vector 8. Check Lemma 12 in Section D.1 for
further details.
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Lemma 3 Suppose P € A (R?) satisfies Ex..p [X] = 0gand V := Ex..p [HXHg] < 400. Define

t

B(a) i= inf {1 € (0.+) s Bxes {Xp{('x"?>ﬂgz} aell4o0),  (28)

and assume that B(c) < 400 for some a € [1,400). Then, there is an absolute constant C' > 0
such that for any given § € (0,1), we have

1 n

<o |y eels) loi(g) + B(a) log® {B}%)} Vloi(g) (29)

2
under X1,Xo, -+ , X, iid P, with probability at least 1 — 4.

We refer to Proposition 2 in Koltchinskii et al. (2011) for the proof of Lemma 3.

Lastly, the following lemma provides a standard upper bound on the Rademacher complexity of
finite hypothesis classes.

Lemma4 Let F C (X — [—B, B]) be a finite function class, i.e.,

F| < 4+00. Then, it holds that

RE(F) < 28y 28 ZFD. (30)
n
for any probability measure i € A(X).
Appendix B. Proofs for Section 3
B.1. Proof of Proposition 4.1
We first observe for any model parameter @ = (W1,--- , W) € © (MF) that
—NNg (X; 9) = —NNg (X; (W17 e 7Wd)) = NNy (X; (le ) _Wd)) ) Vx € Xa

together with (W, --- , —=W,) € © (MF). This observation implies that

Ha (X5 My) = —Hq (X; Mp) = {-NN, (5 0) € (X > R): 0 € © (Mp)}. 31)

With the observation (31) in hand, one can realize from Theorem 1 in Golowich et al. (2018) that

Ry, (Ha (X; MF))
1 n
= E(Xy.,010)~pu®r@Unif({£117) [SUP {|n Z oiNNg (X;; 0)

=1
R (14 @log2)d) T}, Me ()
>~ \/ﬁ :

:0 €0 (MF)}]
(32)
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On the other hand, by virtue of the Ledoux-Talagrand contraction principle (Lemma 1), we obtain
that

R (F)
=Ex,,,~uen |:7/€n(;) (Xlin)}

1 n
= Ex,. ~puon [Ea'lmenif({:tl}") [SHP {‘n > 0 {NNg (X;; 9)}‘ :0€0 (MF)}”

i=1

S 2L : EXl:nNM@)n

1 n
Eo ., ~Unif({£1}") [SUP {‘n D NNg(X;;60)[:0€0 (MF)}” (33)

=1
= 2L B, pon |Ron (Mo (56 M) (X))

=2L - RE (Hq (X; MF))

w 2LR (14 VCTog2)d) TT1L, Mi())

< NG ,

where the step (a) follows from the upper bound (32) on the Rademacher complexity of H 4 (X; Mp).
Hence, one can reveal that

RE(F*) € RE(F) + RE((S))

© 2LR (1 +/(2Tog2) d) T2, M (j) N

< NG N

which thus completes the proof of Proposition 4.1, where the step (b) holds by the triangle inequality
and the step (c) invokes the bound (33) and the standard upper bound on the Rademacher complexity
of finite hypothesis classes (see Lemma 4 for details).

B.2. Proof of Theorem 4.1

We first provide a formal definition of the doubly-robust (DR) empirical risk ﬁDR 0™ x X"0 —
(F — R), where

7/?\/DR (OlznP7X1:n@) (f) = ij iﬁ <w£P> [{y? - f <w£P) }2 - {fo <xE") - f <w£P) }2:|
= (34)
n@ .
S () - ()
and define the DR population risk R : F — R by
R = E(O?;npvxgn@)w@nw@@?}”@ [ﬁDR (OIlP:”ﬂ”’Xgn@) (/ )}  Je7 (33)
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Q
1:np ’Xan

Here, we note that Rpr = Rpr (OI{D:”P, x¥

by n@) F — R under (OIP>

) ~ PE 0 QY.
Then, one can decompose the DR population risk R : F — R as follows:

R(f)
= Boxes [0 0~ 700F] By 500 {500 500} ]
+Ex~qx [{fo(X) - f(X)}Q:
=Exy)~p {P*(X) {v - f(X)}Q:
- . 2
+E(x,y)~p [{ﬁ(X) — PO - JEOY = { 7o) - F(0} ”

(36)

9 Ro(f) + Bpxyor 1000 - "0} [1¥ = 1008 = {fat0) - s} |
where the step (a) follows due to the observation (3). The definition of the DR estimator (??) yields
the following basic inequality: 0 < ﬁDR( f)— RDR (fDR) for every f € F. Thus, we have
0 (%) Ror (f*) — Ror (fDR)
= {Ror (1) =R ()} + {R () = Ra (1)} — {Ra (Jor) ~Ra (1)}
= &o(for)
- {ﬁ (fDR) —Rg (fDR)} - {ﬁDR (fDR) -R (fDR)} )
where the step (b) holds by the well-specification assumption of the model f* € F. It follows that
2] (fDR) =TRqg (fDR) —Ro ()
< {R(f* {
=: (T1

(37

OEXN)
} (R =R (o)}

Bounding the term (T1): With the decomposition (38) in hand, let us first take a closer inspection
on the first term (T1).

(38)

+ {ﬁDR — Ror (

H\ 2

1) LB yyer |00 - (X)) [{Y PP = {0 - )
- {Y — fDR(X)}2 + { — for(X }2”
— 2B (xvymp [{A(X) = p7( {Y £o0) } { for () = 170 }]
— 2By, [{ﬁ(X)—p*(X)}{f( )= fo0) } { for(x >—f*<X>}},
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LEARNING BOUNDS FOR DR COVARIATE SHIFT ADAPTATION

where the step (c) utilizes the decomposition (36) of the DR population risk R : F — R. Therefore,
we have

() <2 [Exery [{5(X) = p O (X) = foO) } { for(X) = 1(X) }] |
< Wy [6(X) = o (X)] - [ (%) = foX)] - | for(X) = ()|

%)4{EX~IPX 50%) _p*(X)}QH% {EXNPX [{fo(x) _f*(X)}2H2 (39)

=4p = "Ml L2 py) - Hfo —f L2(XPyx)

where the step (d) holds due to the Cauchy-Schwarz inequality together with the fact that ‘ for(z) — f*(2)] <

HfDRH + | f*]l & < 2, follows from Assumption 3.
o

Bounding the term (T2): With regards to the term (T2), we make use of tools from the empirical
processes theory in order to establish its upper bound. First, we observe for any f € F that

)
(

S (x9) o ()} U (39) - 1 (x9)
)

With this observation in hand, it is seen that

(12 < sup { |{Row () = Rox(N } ~ (R (/) ~R(N}|: 1 € F}
< asup {|6,(0) (0%, )| : () € 7} + 28 {[6200) (X, )| - 0 € 77}
+sup {|G22(¢) (X, )| : v € 7}
—25up {G}, () (0., ) 1 € FrU (-F)}
+25up {620 () (XL, ) 0 € FrU (-7}

+ sup {G%}@)((p) <X(%n<@> cpeFrU (*]—'*)} )

4D
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where the step (e) follows due to the triangle inequality, —F* := {—¢ : ¢ € F*}, and the functions
GP, : (X = R) = (0™ — R) and {G%(l) (X5 R) > (X" 5 R): e [2]} are defined as

G (9) (ofin) = o E_jp (@) @) {uf = fo 0}7)
~Eixyyr [P0 {Y = ()}

|
G800) (x800) = - 3o (58) {7 (=2) - 1 (:9)} @

€3 (0) (xg) = — {0 (4}~ Excoy [tex)].

If OF,, ~P®% and X, ~ QY"?, then
- {65 (9) (05,,) = (P-P) [s(X)e(X) {¥ = o(X)}| s € Fru (-7},
200 (x8,,) = {Ox —x} [0 {o(X) ~ 10} 0 e FrU-F).
6B (x%,) = {Qx — @} [teX)P] sp e Fru (-7}

are empirical processes indexed by ¢ € F* U (—F*), where P € A (X x R) and Qx € A(X) are
the empirical distributions for the np labeled source samples Ollp:np and ng unlabeled target samples

X(%n@, respectively, i.e., P := L Py 5(X?7y_P) and Qy 1= L S7°

np ng £~j=1 5X;Q'

Control of the supremum of {G},_(¢) (O7,,,) : ¢ € F* U (—F*)}: Firstly, we are in need of a

delicate control of the expectation of the supremum of the empirical process
{GF,(#) (%) s € FrU(-F")}.
This goal can be achieved through the following lemma, whose proof is provided in Appendix C.1.

Lemma 5 The expectation of the supremum of the empirical process {GEP (p) (Olf:np) T EFFU (—.7-"*)}
is upper bounded by

Eor, ~pere [sup {GF,(¢) (OF,.,) ¢ € F'U(=F)}] < 4Cu 1+ COREY (F). @43)
We then move on to a tight control of the size of
{GEH’(@) (O]f:mp> tp€eFrU (_-7:*)} - Eo]ﬁ’mﬂyw]pm]p HGEP(SO) <011P:nn)) tpeFTU (—.7:*)”

under Oﬂf:mp ~ P®"F_ This task can be settled via the following lemma, whose proof is deferred to
Appendix C.2.
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LEARNING BOUNDS FOR DR COVARIATE SHIFT ADAPTATION

Lemma 6 Ifo]frnp ~ PO"®  then with probability at least 1 — §, we have
B EOHf:"PNP®nP |:SuP {GEP (SO) (Ollpn]p> tp€E F*U (—F*)}]

6Cq4 (1 + Cy 1 2log (% 44
< SCa(l¥ Gy, <) 20 (14 ) | 202 () 44
2RnX (F*)log (3
+4Cdr(1+crf)\/ P ( ) Og((S).
np
To finish up, we first denote the right-hand side of the inequality (44) from Lemma 6 by
1 1 2log (4
Bp(5) = 6Car (1 + Cir) log () +2Cy (14 Cy) 2log (3)
np (5 np

(45)

2R (F*)log (
+4Cdr(1+crf)\/ £ (F)log (5).

np

for ease of exposition. Then, with probability at least 1 — §, one has
sup {Ggp(gp) (OI{DWP) cpeFrU (—.77*)}
= sup {Ggp(gp) (Oﬂf:np> cpe FrU (—.7-"*)}
~Eo;, pene [sup {GF,(¢) (OF,,) 1 € F7 U (=7 ] (46)
+Eop, pen [sup {G,(¢) (OF,,, ) s 0 € F*U(=F) ]

()
< Bp(6) + 4Cq (1 + C) REX (F¥),

where the step (f) invokes Lemmas 5 and 6. For simplicity, we define the following event: for any
5 €(0,1),

Ee(8) = {(O]fmp,x(%m> € O™ x X"

47
sup {GE, () (05,,,) 0 € F* U (=F")} < Bo(6) + 4Cu: (1 + Cur) REX (F7).
Then, the upper bound (46) implies
(IP@’”P ® Q?}”@) (Ep(8)}) > 1§ forevery o€ (0,1). 48)

Control of the supremum of {G%(l) (¥) <X?n .

> rpEeFrU (—.7:*)}: Similar to the above ar-
gument for controlling the supremum of the empirical process {GEP (p) (O[{Dmp) tp e FFPU(-FY) },

we first establish an upper bound on the expectation of the supremum of the empirical process
{620() (X%,,) s 0 e Fru (-7},

We provide a desired result in the following lemma, whose proof is postponed to Appendix C.3.
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Lemma 7 The expectation of the supremum of the empirical process {G%( )( ) (X(lQnQ) p € FFU(-F *)}
can be upper bounded by

Byg, oo [0 {80 (XEyy) 0 € 71U (] <404+ CORE (7). o)

Analogously, we now aim at a tight control of the size of

sup {€H () (X, ) 10 € FIUF)} —Eyg _gone [sup {GEV(0) (X, ) 10 € 77U (-7

1nQ X

under the data generating process X(%n(@ ~ Q?}m@. This goal can be achieved through the following
lemma, whose detailed proof is provided in Appendix C.4.

Lemma 8 If XY ?}nQ, then with probability at least 1 — 6, it holds that

Ling
sup {G%( )( ) (X?n(@> cpeFrU (—]:*)}

_ EX?"Q g {sup {G%(l)( ) <X(1@n@> pEFTU ‘F*)}

1+ C; 1 2log (1 R (F*)log (1
L 60HG, () P RCAN L2 16 NUTPIeR \/ Og(é).
nQ o nQ

(50)

For simplicity, we denote the right-hand side of the inequality (50) from Lemma 8 for any given

9 €(0,1)as
21
By (s) = ST 1og<1 +2 (1+Cyp) | —228) s (
nQ 1
(51)

2RYY (F*)log (3
4(1+Crf)\/ (nQ og 5)

Then, it holds with probability greater than 1 — ¢ that
sup {GLV(p) (XT,,) 1 ¢ € FrU(-F)}
= sup {@%D( ) (X?m@) tp € FU (—J-'*)}

B g [ (E00 () e ruem)]
n EX?nQN one [Sup {G%l)(go) (X?n@> e FrU (—]-‘*)}]

()
< BY(0) +4(1+ Cr) REX (F¥)

where the step (g) holds due to Lemma 7 and 8. For the sake of conciseness, we define the following
event: forany § € (0, 1),

e (6) = {(oﬂinp,x‘%n@) € 0" x X e ;

| 0 (1) &)
sup {GLV(p) (xF,,) 19 € FTU(=F)} < BY(6) +4(1+ C) RE: (F7).
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Then, the upper bound (52) directly yields
(IP®"P ® Q?}%) {88)(5)} >1-46 forevery 0 € (0,1). (54)

Control of the supremum of {G% )( ) (XQ

by n@) tpEeFTU (—]:*)}: Akin to the above del-

icate control of the supremum of empirical processes, we upper bound the expectation of the supre-
mum of the empirical process

[622(p) (XE,) v € F U(-F)}.
It can be developed via the following lemma, with the detailed proof postponed to Appendix C.5.

Lemma 9 The expectation of the supremum of the empirical process {G%( )( ) (X?n @) e FrU(-F *)}

has an upper bound

E. 8ng [sup {GQ @ () <XQ

: U(=F) ] <16-REx (FY).
L) ee PO S0 RG ) 6

As the next step, we now turn to a tight control of the size of

sup {G%@)(gp) (X;@n(@) cpEeFU (—]-'*)} - E Q@n@ [sup {G%@)(gp) (X(l@nQ> cp€eFU (—]—'*)H

with Xgn ~ Q;@;n@. The following lemma takes a step forward towards this goal, whose proof is
deferred to Appendix C.6.

Lemma 10 If X(%n@ ~ Q?}n@, then with probability at least 1 — 6, it holds that
sup {G%( ) () (X?m@) e FU (—.7:*)}

B EXQ @®"@ {sup {G%( )( ) (X(l@n(@> cpe FrU (—]—“*)H

12 /21 R (F*) log (
< —log og 16\/ Og(a).
nQ

For ease of expression, we denote the rlght-hand side of the bound (56) in Lemma 10 by

21 X (F*)log (X
BY(5) = —log a4y 2] 8 ( 16\/R (F4)log (5). (57)
n

Then, one has with probability at least 1 — ¢ that
sup {G%(Q)(cp) (X%n(@) o €eF U (—.7-"*)}
= sup {62 () (XL, ) : () € F7U(=F")}

- EX&QNQ(@"Q [sup {G%( () (X?n@> cpe FrU (—.7:*)}] (58)

n IE MQ Qe [sup {G% )( ) (X(l@n(@) tp € FU (—]—'*)}]

M) .
< B (6) +16- R (F*),

(56)
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where the step (h) invokes Lemmas 9 and 10. For the sake of simplicity, let us define the following
event: forany ¢ € (0, 1),

e 0) = {(of %, ) € 0" x X2
sup {G22(p) (x8, ) s 9 € FU(=F) } < B (9) +16- R%Y (7). e

Then, the upper bound (59) gives
(IP’®”P ® Q?}m@) {5&2)(5)} >1—46 forevery ¢ € (0,1). (60)

Finally, it is time to put all pieces together in order to bound the term (T2) from our main bound
(38). To this end, we introduce the event £(5) := &p ($) N 6'(8) (%)n Eg) (%) forevery 6 € (0,1).
By virtue of the union bound, the inequalities (48), (54), and (60) implies

(B 0 @F™) {£@)) = 1 - (B @ Q¥ ) (@™ x X'\ E()} 2 1 -5,
On the other hand, by utilizing the definitions (47), (53), and (59) of the events Ep(9), 5(8) (6), and
Eg) (0), respectively, it follows on the event £(0) that
@)
(T2) < 2sup {GEP(QO) (Olf:mp) e FrU (—.7:*)}
+ 2sup {G%(l)(gp) (X(%n@> tpeFU (—.7:*)}
+ sup {G%@)(@) (X(%n@) o€ FFU (—f*)} (61)
0 (1) (9 @ (9
< e Z e
o (1) oty (7)o
+8Car (1+ Cr) Ry (F) +8 (34 Cup) REX (F7),

where the step (i) holds by virtue of the inequality (41). Taking two bounds (39) and (61) collectively
leads to the following upper bound on the excess Q-risk of the DR estimator (5): on the event £(0),
which holds with probability at least 1 — ¢ under the probability measure P®"* @?}n(@, we obtain

€o (for) < @D +(T2)
. « ; . 0 ) )
<41~ Flpcen” [ 7 ey, + 200 (3) #2880 (5) 456 (5)

]P K £3
+8Cur (1+ Cit) Ry X (F*) + 8 (3 4 Cut) RX (F)

. . 3\ (Cy 1
<4lp=rlleeesy - ||fo— f L) | 12 (2 + Crr) log <5> <n]p + n@>
+4(1+Cg) (2+ Ci) 4210 Sy (Ao L
ar if S\s)\Vmr g

3\ [(REx (F*) R (F)
+8(1+ Car) (2 + Cit) 4 [log (5) ( N + o
+8Car (14 Cit) RyX (F*) +8(3+ Cit) RX (F7),

and this completes the proof of Theorem 4.1.
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B.3. Proof of Theorem 5.1

To begin with, we introduce some key universal constants to formally state our improved structure-
agnostic guarantee of the DR estimator (20) for parameterized hypothesis classes F C (X — [—1, 1]):

By :=4 (14 Cy4) (14 Cy) by,
By := 8V/2 - max {Cdr (14 Cit) ba, b% +(1+ Crf)2 52} ) (62)
Bs := max {2 (1+ Cq) (1 + Ci) ,4} - bg + 6b1ba.

With the above conventions, the detailed version of Theorem 5.1 can be stated as follows:

Theorem B.1 (Structure-agnostic upper bound II of the DR estimator) With the parameterized
function class (18) and assumptions 1-6, the DR estimator (20) satisfies the following: there exists
an absolute constant K € (0, +00) such that, with probability at least 1 — 86 under the probability
measure PO & Q?}m@,

&o (éDR> =Ex gy [{f (X§éDR> - f*(X)}Q]
Trace {Ip (0%) I@l (0*)} d (63)

+ — 9
np nQ

< 18K2 (1 + Cq)* (1 + Cir)* log (?)

provided that min {np,ng} > % - N*log (%), where N* := max {N7, N2} and

= max {n, (283K (1 + Cyat) (1 + Cep) Y2, 18 {K (1 + Car) (1 + crf)}Q} ,

86083

)

1608783, }3

2
K(1+Cq) (1+ Cff)} ’ { (14 Car)® (1 + Cyp)?

K 1= max {(26082)2 : {

{ 6408315 } 80132
3(1+ cdr)2 (1+C)?) "T(1+Ce)*A+Cp)? [’

N = ‘ 0] - max {1 Trace{ 2 (07)Z5° (07) + I3 (a*)}
:mm Trace {I]p Z@z (0*)} , Trace {I@l (0*)}}} B , (64)
_mln {Trace Ip (60 I_2 (0*)} , Trace {I@l (0*)}}} _%} ,

Trace Ip 9*) 2(0%) + Iy (9*)} ’ [Trace {IIP (9*) 2 (0%) + (9*)”
N5 = max ; 2
min Trace {I]P’ CA )I@I (9*)} 7d} [mm {Trace {I[p 0*) T, } ,dH
HI@l (6%) :p : H%l 09’ N :

min {Trace {Ip (6%) I@l (0*)} ,d} " | min {Trace {I[p (0*)1@1 (0*)} ,d}
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|75" )

op

min {Trace {Ip (6%) I@l (0*)} , d}

Towards proving Theorem B.1, we first present a key technical lemma that plays a crucial role in the
proof. Roughly speaking, the lemma below captures the distance between the DR estimate Opr € ©
and the ground-truth parameter * € © under different metrics.

Lemma 11 With Assumptions 1-6, any § € (0, 1] and (np, ng) € NxN such that min {np, ng} >
k- max {N1,Na} log (2), where k, N1, and N are specified as (64), the following facts hold with
probability at least 1 — 86 under P€™ ®@ Q?}m@ : for some universal constant K € (0, +00),

(i) we have Opg € B, (5) (6), where the radius v(5) € (0, +00) is given by

7(0) :=3K (14 Cq) (1 + Cyt) 4 /log <d)

)
_ _ (65)
Trace < Zp (6%) ;% (0%) Trace { Z* (0%)
@] [l o)
np nQ
(ii) it holds that
1 . 2 5 2 d
HI@ (0°) (Bor —0°)|| < 9K (14 Ca)® (1 + C)*log (5>
2
(66)

2
Trace {I]p (0" Iy (e*)} y
- "\ e

For simplicity, let A(§) € O™ x X"2 denote the event for which Lemma 11 holds, which immedi-
ately gives us <IP’®”]P’ ® Q?}n@) {A(6)} > 1— 86 forany 6 € (0, £].

We embark on the proof of Theorem B.1 by doing a Taylor expansion with respect to as follows:
£q (9DR) =Exy)~0 [E (Y, f <X§ 9DR>) — (Y, f(X; 9*))}
= {Exo Vol (v 7 (X:0)1} (or — 07)
+ g1 (B - 0) Exyyen [V30(Y S (X:07)] (Bor — 0°)
+ % <E(X Y)~Q {Vg (Y f (X 0))} (ODR - >®3>F ©7

= 21, <9DR - 9*>TZQ (6 (ODR - 9*>

5 s [Fin (s (1) (o 0) ),
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for some 6 € {(1 — A0+ Npg : A € [0,1] }, where the step (a) holds due to the following facts:

Vol (y, f(x:0)) =2{f (x;0) —y} Vof (x;0),
V3l (y, f(2:0)) =2Vof (2;0) {Vof (x;0)} +2{f (x;0) —y} Vaf (x:8),

V35, f (5:6)) = 2V3F (4:0) @ Vof (0:0) + AVof (x:0) 0 V3f (w:6)
+2{f (;0) —y} Vo (2;0)
Thus, it follows from the equation (67) that
o (@)DR> < % (éDR - 0*)TI@ (6%) (éDR - 9*)
N e [N e M

9

(o — 9*)Tz@ (6") (Bor — 0" + % HéDR _or|

where the step (b) follows due to the observation that the operator norm |[-[|,, : (RY) o, Ry isa
convex function together with Jensen’s inequality and the following bound: for any 8 € O,

|Vae (Y, f(X; O)lo, <2+ Y1) Vo f(X; 10)]4p +611Vef (X306 M | Vaf (X; 10)]]op

§ 4b3 + 6b1by < Bg

Q-almost surely, where the step (c) holds by Assumption 3 and the part (ii) of Assumption 5. There-
fore, while being conditioned on the event A(J), we reach

o (éDR)

< gKQ (14 Cg)* (14 Cy)? log (?) J

Trace {Ip (07) Iy (0*)} d
e Ve

(70)
* g[”ﬂ(?’ (1+ Ca)* (1 + Cr)* log? <f5l>

\l Trace {Ip (6%) 162 (0*)} \l Trace {I@l (0*)}
+

np ng

3
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At this point, one can observe that if min {np, ng} > % - max {N, N>} log (%), then

283[(3 (1+ Cq)® (1 + Cip)®log? (‘;)

3

Trace {Ip (0%) I@Q (6%) }

Trace { Z* (0*
. {z'©"]
e e (71)

2

<

9 d> Trace {I]p (6%) 161 (0*)} d
2

2 2 2 a d
K (1 + Cdr) (1 + Crf) log (5 . + o

Hence, by taking two pieces (70) and (71) collectively, it holds that if min {np, nQ} > K-max {N1, s} log (%),
then we have on the event A(¢) that

o (éDR)

Tr Tp (0°) I (6*
ggk¢<l+c&f(l+6hyk%<d> ace {7 (6") 75 ( )}*-VZL

1) np

2

(72)

* —1 *

) d Trace I]p (9 )I (9 ) d

< 18K? (1+ Cdr)2 (1+ Crf)2 log <> { “ } +—1,
0 np ng

where the step (d) invokes the Cauchy-Schwarz inequality. Since (P®”P ® Q?}nQ) {A(®)} > 1—
80, the bound (72) on the excess Q-risk of the DR estimator (20) holds with probability exceeding
1 — 86 under the probability measure P @ Q?}n‘@, which completes the proof of Theorem B.1.
Appendix C. Proof of auxiliary lemmas for the proof of Theorem 4.1

C.1. Proof of Lemma 5

By following the standard symmetrization argument from empirical processes theory, we find that
By, ~pore [sup {Gh,(¢) (0F,,) 10 € F* U (-F")}]
~Eor,_pore [sup {|GE.(¢) (OF, )| s 0 € 7'} (73)
1 & . .
3 (30 o (1) {17 - o ()} e ]
P
To control the last term in the inequality (73), we leverage the Ledoux-Talagrand contraction princi-

ple, which is formally stated in Lemma 1. To this end, define the functions cZ)J;»P : 0™ — (R — R),
i € [np], by

§2E(

OF T 1inp ) O QUNE({£1}7F) [SUP {

O (05, ) 1) =5 (aF) {uF = fo (+F) (0, weer, (74)
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and let ¢; := ¢; (OF,,,) : R — R for OF,, ~ P®"* for simplicity. Let Ap := (%, {|V;"| < 1},
which holds P®"?-almost surely. Then, one can easily find that the function ¢ : O"* — (R — R)
turns out to be a Cg; (1 + Cyf)-Lipschitz continuous function so that d)?(O) = 0 for every i € [np]
on the event Ap. Then, while being conditioned on Olfmp, we obtain by virtue of Lemma 1 that

o mgsare [0 [ 3 enn (7)o () {07 - 1 (37))|
B p{ LS (x8) o (x7) {12 o (x7)Y]
| b1y € T (o[{’inﬂy)}
t1ns € T5 (OF,,) H L,

14 (75)

[ 1
= Eg,.,, ~Unif({£1}"2) [SUP { - > oy (t)
L =1

1 &
< 2Car (1 + Ci) Egy,, ~umit({£1}77) [SUp {'np D> _oiti|
=1

where 7p : Q"™ — P (R"F) is defined as

7&»(0157@,) = {(f (m]f’) — (mf”) i€ [TL[[D]) . f ef} C R™.

Here, P (R"?) stands for the power set of the np-dimensional Euclidean space R"?. By taking the
bound (75) collectively into the inequality (73), we arrive at

Eoe, ~pone [sup {65, (¢) (08, ) o e Fru (-7}
o6 0 4G} o
1 Zam time € Tp <O1 n]p) }] : IAP]

i=1

S 2E<O]¥:np’al:nﬂ>)NP@nP@Unif({il}np lsup {

< 4C’dr (1 + Crf) E()ﬂl” ~POnp
:7L]P

Eory.pp~Unit({£1}7%) [SUP{

= 4Cy; (1 + Cl‘f) EOD{’Z”PNIP[@"P |:Rmp> (]:*) ( 1: Tl]p) : ]]'.A[F’]
= 4Cq4 (1 + Cp) RyX (F),

as desired.

C.2. Proof of Lemma 6

We begin the proof with the introduction of the function class {0p(y) : ¢ € F* U (—F*)}, where
Op(p) : X x [—1,1] — Ris defined to be

08()(2,9) 1= p(@)o(@) {y — fol@) b, Vlw,y) €Xx [-1,1).
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Recall that the event Ap = (7%, {|Y;"| < 1} holds P®"#-almost surely, i.e., (P*"") (Ap) = 1. We
thus obtain that

{
{GEP(SO) (O]f;nﬂ,,) Lo €FFU (—]—"*)} L
{ij fj 05(2) (OF ) = Eonr [0r(9)(O)] : p € F* U (—]—“*)} S VR

= sup {nlp > 0p(¢) (OF) ~Eone 0p(£)(0)] - 9 € F* U <—f*>}

=1

P®"_almost surely. In light of the equation (76), it can be easily seen based on the assumption (6)
that

(i) 10p(©)(z,y)] < 2C4 (1 + Cy) forevery (z,y,p) € X x [—-1,1] x {F*U (—=F*)}.

(i) Var(xy)up [0p(0)(X,Y)] < E(x y)op [{9P(90)(Xa Y)}Q} < 4C3 (1 + Cyy)? for every ¢ €
FrU (= F").

By virtue of the classical Talagrand’s concentration inequality (Lemma 2) with parameters (B , 1)2) =

(20dr (1+ Cy) ,403r (1+ Crf)2>, it holds with probability at least 1 — ¢ that

sup {GF,(¢) (OF,,) 1w e Fru (-7}
— EO[}”:RP~P®”P [sup {GEP(@ (O]fw) cpeFrU (—.7:*)”

2log (%)
np

< 6C4r (1 + Crf)
< —np

log <1> 1204 (1+ ) (77)

d

2 1
+ \/@\/QCdr (1+ Cy) Eoﬂf:npNP(gnP [sup {G%}P((p) (OI{D:W}) cp e FruU (_]:*)}] log <5>

2R (F*)log (
+4Cdr<1+Crf)\/ P ( ) g((S)’

np

g) 6C4r (1 + Crf)
S —np

2log (%)
np

1
log <5> + 2Cdr (1 + Crf)

where the step (a) invokes Lemma 5. We thus complete the proof of Lemma 6.

C.3. Proof of Lemma 7

In light of the standard symmetrization argument from empirical processes theory, we reveal that

EX(IQ:nQNQ?;nQ [sup {G%(l)(gp) (X(%n(@> tpeFU (—f*)H
“Eyg oy [p {010 (XE)| e € 7] )
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ng
= 2E(X‘@ o1ing ) ~QY Cenif({x1y72) | *P le JZ;UW (X;@> {fo (X;@> - <X§@>} pe

1nQ

We now focus on a tight control of the last term in the bound (78) via the Ledoux-Talagrand contrac-
tion principle (Lemma 1). Towards this end, we consider the functions oz(]@ X" — ([-2,2] = R)
for j € [ng) defined as

a? (x?ﬁnQ) (t) = { 7o (m?) _ (x?) } t, Vte[-2,2], (79)

) : [=2,2] = R, where X(l@n ~ Q. Then, ozj [-2,2] = Ris
an (1 4 Cy)- Lipschltz continuous function with o ; 2(0) =0forj e [ng)]. By applying the Ledoux-
Talagrand contraction principle (Lemma 1), while belng conditioned on X1 ng» W€ NOW have

and simplify o = (X?nQ

B grnit(172) [ SUP *ZWP( D {fo(x2) -1 (x2)}iwer

1
_ Q
= EalmQNUnif({:tl}"@) sup "o ;Ujo{j (tj)| : t1ng € To ( 1. nQ> (80)
L .
2(1+ Cu) EamQNUnif({il}"Q) sup % Zajtj ttimg € T ( 1: nQ) )
=1

where 7g : X"¢ — P (R"?) is defined as
To (x20g) = { (7 (+2) = 1 (+3) s s € Ing)) - f € F} CR7, 81)

Here, P (R"@) refers to the power set of the ng-dimensional Euclidean space R"2. By taking two
pieces (78) and (80) collectively, we reach

E <2, 20 [Sup {G%l)( ) (X(?m@) tpEeFTU (—J-"*)H

<4(1+C, n , n su — ojtj| .t € T¢ ( )
( ) B (X?m@ o—lmQ)M@;@} Qgunit({£13"e) PP nQ ; j Ling € /@ | A1ing

4(1+Cy)E x2 o Q®nQ [7/?\/71@ (F*) (X?m@)}
=4(1+ C) R, (F7),

which thus completes the proof of Lemma 7.

C.4. Proof of Lemma 8
Similar to the proof of Lemma 6, let us first introduce the function class {08 ) (p):p e F U(-F") },

where 08 ) (¢) : X — R is a function defined as

05 (©)(@) = o) { fola) = F (@)}, Voex.
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Then, it follows that

Sup{G%MD@ﬁ<X9mJ:gDEI*U(—fﬂ}

ng
~ sup le S 09(0) (X2) ~ Exegy [100)(0)] 10 € FrU(-F)
j=1

At this point, one can easily reveal based on the assumption 3 that

@ ‘98)(@(%)‘ < 2(1+ Cy) forevery (z,¢) € X x {F*U (=F*)}

(82)

(ii) Varx.g, [98’(@(}()} < Ex-gy [{9&(@(}()}1 < 4(1+ Cy)2forall f € FU(—F).

The classical Talagrand’s concentration inequality (Lemma 2) with parameters (B , v2)

together with the equation (82) tells us that with probability at least 1 — 6,

sup {Ggé(l)(so) <X(%n<@> rpEeFU (*]—'*)}

1
0 g

(2 (1+Cy),4(1+ Crf)2>

(83)

<=
¥ ;7@\/ 214 C)Byp _gona [sup {G(0) (Xng) 1 € 40 (-7} 1eg <‘15>

1:nQ

%)Mlog <1> +2(1+Cy)

nQ 1) ng

where the step (a) follows by Lemma 7, and this finishes the proof of Lemma 8.

C.5. Proof of Lemma 9

2108 (5) 4 414 ¢ \/272%{ (7 log )

Similar to the proofs for Lemmas 5 and 7, we embark on the proof with the standard symmetrization

argument from empirical processes theory, which yields

EX%nQN #mg [sup {G%@(gp) (X(%n@) tpeFU (—.7-"*)”
=Exg, e [P (G0 (X)o7}
ng
< QE(X‘%nQ,aMQ)NQ?;"Q@Unif({il}"@) sup le ]Z:; oj {<p (X?) }2 cp EFF

We now consider the function 52 : [-2, 2] — R defined to be

BUt) =12, Vte[-2,2].
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It turns out that 52 : [—2,2] — R is a 4-Lipschitz continuous function so that 32(0) = 0. Then, the

Ledoux-Talagrand contraction principle (Lemma 1) tells us that while being conditioned on X(gn ,
nQ

nQ

EUI:nQNUnif({:tl}nQ) sup € Zaj {gp (X?) }2 cp € F*

= EalmeUnif({il}nQ) sup nf Z 0']5(@ (t]) : tlZTLQ S 7(-@ <X(1@n@> (85)

1
E . Q
< 8E01;nQNUnif({:t1}"Q) sup thj : tl:n@ € 7@ (Xl:n@) )
jf

where the function 7g : X"@ — P (R"2) is previously defined as (81). Putting two pieces (84) and
(85) together, we arrive at
®ng [Sup {G%@)((p) (X%n@) cpEeFU (—.7:*)}}

Q
Xl:nQ NQX

E

ng
1
. Q
<16 - n = by
<16 E(X“ﬁnQ,amQ)N@i Q@ Unif({£1)"0) sup o ;Uﬂj ting €T (XLnQ)

— 16 - EX@ ®ng [ﬁm@ (F*) (X?n@)}

1:nQN X

_ QO *
~16-RY (F7),

as desired.

C.6. Proof of Lemma 10

We begin the proof by introducing the function class {98 ) (p) : o€ F*U(=F%) } where H(g ) (p) :
X — R is a function defined as

05 (0)(2) = {p(2)}?, VueX

Then, it is obvious that

sup {G%’@)(gp) (X(%n(@) cpeFU (—.7:*)}
. (X2) = Exnoy 08 ()(X)] 10 € F U (-F) "

Also, one can easily find based on Assumption 3 that

(i) ‘98)(90)(30)‘ < 4 forevery (z,p) € X x {F*U (—=F*)}.
(i) Varx~gy |05 (9)(X)] < Exvay [{98@)@)}1 < 16 for every f € F U (—F).
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By virtue of the classical Talagrand’s concentration inequality (Lemma 2) with parameters (B, v2) =
(4,16) together with the equation (86), we establish with probability at least 1 — § that

sup {G%(Q)(cp) (X?nQ> o €eFTU (—.7-"*)}

_ EX%nQN@?}"Q [Sup {G%’;Z)(QO) <X9n@) p € FU (*]-"*)}]

2log (%
1210g<1)+4 70g()

nQ

\/ anNQ@b"@ sup {G%( )( ) (X(l@nQ> cpe FrU (_]_-*)H log <(1$>

el R (F*) log (3
< —log og 16\/ og(5)7
nQ

where the step (a) follows due to Lemma 9. This ends the proof of Lemma 10.

| A

—~
©
=
—_
[\

Appendix D. Proof of auxiliary lemmas for the proof of Theorem B.1
D.1. Proof of Lemma 11

Before delving into the proof of our main Lemma (Lemma 11) that plays a key role in the proof for
Theorem B.1, we first establish key concentration properties of the gradient and the Hessian matrix
of the DR empirical risk (19) that holds under Assumptions 1-5, whose proofs are postponed to the
final part of this subsection.

Lemma 12 (Concentration property of the gradient) Given any A € R*%, there exists a uni-
versal constant C(A) € (0, +00) that satisfies the following concentration property of the gradient
of the DR empirical risk (19) with respect to the parameter vector 0: for any § € (0, 1], it holds that

HA {W%DR (Of Xi) (0 ~E(or,_xt, Jporear [ToRom (OFn Xo ) 07 }

<c(A) ¢W+JW .

ne nQ

2

2d 1
+4(1+ Car) (1 + Cir) b1 [|A[[op log( > ( —I—)
) np N
= Bi (defined in (62))

with probability exceeding 1 — d under the data generating process (O]f:mp, X?n @) ~ PO QT;(@,
where the functions ®p : X x R — R? and Op: X — R? are defined as
Pp(z,y) = 2(x) {fo< ) - } Vof (2;6") and

(88)
(z:6%) )}ng(x %),

38



LEARNING BOUNDS FOR DR COVARIATE SHIFT ADAPTATION

respectively, and the quantities Vp(A) € (0,400) and Vg(A) € (0, +00) are defined by
2
Ve(A) = E(xyyor [||A {@p(X,Y) ~ By y)r [@2(X, V)]}[3]  and

(89)
Va(A) = Ex-qy [I1A {2¢(X) — Ex~gy [@a(X)]}3] .

respectively.

Lemma 13 (Concentration property of the Hessian) The Hessian of the DR empirical risk (19)
with respect to the parameter vector 6 has the following concentration property: for any § € (0, 1],

it holds that

Vg,ﬁDR (O]fn]pa 1: nQ) (0*) (O]P

X2, )~PeraQ)? [VgﬁDR (OIE)W, 1nQ) (9*)}

Linp’ an

op
1 4d 1 4d
< 8v2 - max {Car (1 + Cip) ba, b2 + (1 + Cor) b} {\/ Ogn( 5 \/ Ogn( ) (90)
~ P Q
= B (defined in (62))

with probability at least 1 — § under the data generating process (OIE) > X(1@n@> ~ PO @ Q2.

Lastly, it is straightforward to see that

VoRon (ofx80) 0) = 2 35 (o7) {0 (+7) 47} Vo (+7:0)
=1
ng
g LA (55:0) = o (o)} var (:0).

+— HZQ [Vef (56970) {ng (a:%g) }T + {f (m?,é)) — fo (x?) } Vaf (x‘j@ﬁ)]
j=1

ViRor (of,.,.x7,,) (0) = f Zp (F) {fo («F) = oF } Vi £ (2F:0)

5:0) 1 (+9) V74 (+0)]

By making use of the observation (91), it follows that

E[V@ﬁDR (Olf;nw 1n@) ]
= 9By [(5(X) — (X)) { o
E[VgﬁDR <OI1P:W 1n@) ]
= 9y [{A(X) — ()} { ol

X) = f(X:0")} Vof (X:6%)], o)

X) = f(X:07)} V3f (X:07)| +Zo (6"),
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and while being conditioned on the event Ap := (;F; {|Y;F| < 1} that
2 <~ s ; 2 P,
<2 e ol s (),
2§ Q. 2 ¢ (xQ.
25 [frar (s 53 (29

# (e 4l ) [w3s (x:0)], )

(@)
<2(1+ Cq) (1 4 Ci) bg + 6b1b2 < B3

|VéRok (0%, XL, ) (6)

O]

op  (93)

for every 8 € O, where the step (a) comes from Assumption 4 and the part (ii) of Assumption 5.

With these key preliminary results in our hand, we are now ready to prove Lemma 11. Hereafter,
we focus on the case where © = R? for simplicity of presentation. For any & € (0, 1) and any fixed
matrix A € R%?, we define the events

E1(0;A) = {(o]fmp,x?in@) € 0™ x X" :

|A{VoRor (F,... %%, ) (6") —E[VoRor (OF,... X%, ) 0] }], (94)
e \/VH»(A)H Eg@’) . \/v@mi;og () 1 g, Al e (gz) <n1P ) nl@) |

and
&(0) := {(0]:}[):@7)((%%) € 0" x X" ;

|V3Ror (0%, X8, ) (0°) ~ E[V3Ro (OF,,. X, ) (6°)]

<) Jloss) . [loe(§)
> 2 np ng )

so that (P97 © Q") {€1 (5 A)} > 1 - 2 forany A € R? and (P © Q") {£2(0)} >
1 — 44 for any given § € (0, %] due to Lemma 12 and 13. For simplicity, we employ the notation

ﬁDR = 7/€DR (O]fmp,X(%nQ) : R4 — R for (Olf:n]p’x?in(@> ~ Ppo®ne X (@;8}”@ as well as g :=

P 95)

VoRpR (0")—E [VgﬁDR (0*)] throughout this subsection. Owing to Assumption 5, it turns out for
every @ € R that while being conditioned on the event ApN&,(8), where Ap = (7%, {|VF| < 1},

Ror(0) — Ror (67)
@) . ~ o1 . A . « B .
< (0-6) VoRor (6%) + 5 (0 = 09) V3Ror (07) (0~ 607) + 5 16 — 675

Y w0_-0)E [VeﬁDR (0*)} +O-6) g+ % 6-6E [vgﬁDR (0*)] 6 — 6%
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o os(5) (o + ) lo -0l 1o 071 9
D 9y [{0(X) p*(X}{fo(X (Xﬁ*}(a 6%)T Vof (X;:67)] +(0-67T¢g
(6 -0 Exry [{5(X) = 0 (O} {fo(X) = 1 (X:0")} V3£ (X;67)] (6 - 0)

b0 To (870 e*>+’§2,/1g<d) (o) I = 01+ o —0°1;

where the step (a) follows due to Taylor’s theorem together with the fact (93), the step (b) invokes
Lemma 13, and the step (c) holds by the observation (92). Thus, by letting A(8) := 6 — 6* € RY,
we obtain from the inequality (96) that on the event Ap N E2(0),

Ror(0) — Ror (67)
< 2Exry [{P(0) = o (X)} {(X) = £ (X:67) [ {A(0)} Vs (X:67)| +{A(0)} g
+ Exery [{500) = 0 (O} fo(X) - £ (X567} {A@O)} T V3F (X567 A60)]  07)

J
#5180 To () A0 + 2 fos (5 ) (= +
[2

{
= Ex-py [{ﬁ(X) —p (X))} {fo(X) - [ (X; 0*)} {
+1 5 (A0) - z}' Io (0°) {A(0) — 2} — 1ZTI@ (67)z

= ) IA®) + 21801

A
AO)}T Vo (X:6%) +{A0)} V3 (X:6") A0)]]

2
By d 1 2, Bs 3
=2 N — ||A(6
e 1os (5) (o + o ) 1805 + 218013,
where z := —I@ (0*) g € R%. Employing a similar argument, one can reveal for any 8 € R? that

while being conditioned on the event Ap N E3(d), we have

Rpr(68) — Rpr (6%)

@ * -~ * 1 * -~ * * B *
> (0-07)" VoRpr (67) + 5 (0~ 67)" ViRor (67) (6~ 67) — 51 [0 — 675

(e) T T
> 2By opy [{p (X))} { X,o* 6 — 0% ng(X'O*)}—i—(H—O*) g
+(0-67) Exop, [{ (X) = p"(X)} { folX) = £ (X o*)}vmx 6")| (06" ©9)
%(9 0")' Io (6%) (6 — %) BQW ||0 0" > - *HO—B*H%

= Expy [ {6(X) = p*(X)}{ fo(X) - 1 (X;67) [m ) VefXH*)+{A( )} V3 (X:6%) A6)]]

+ 5 {A0) ) Tg (0 {A(0) 2} — 32 To (6) 2

_ % log (d) (\/L \;) O % NG
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where the step (d) invokes Taylor’s theorem as well as the observation (93), and the step (e) follows
due to Lemma 13 and the fact (92).

Now, we use Lemma 12 with A = 75 1 (6*). While being conditioned on the event £; (5 i 1o G )) ,
we have

Izl = ||75" (6" g,

<c {1@1 (9*)} J Vp {I@l (0*)} log (4) ) $ Vo {1@1 (0*)} log (2)

np nQ

o (5) G )

VE(1+C) (14 G 1o (§)

1By HI@l (6%)

) 99)

<C {I@l (e*)}

\l Trace {_’Z]p (0*)162 (9*)} N $ Trace {I@l (9*)}

np nQ
(5) G o)
log (=) ( —+—1.
op ) np nQ

where the step (f) can be obtained by letting A = Iy ! (6*) in the following facts: given any fixed
matrix A € R4 it holds that

+ B HI@l (6%)

Ve(A) = Exyyep || A {26(X.Y) ~ Egxyyp [B2(X. V)] [2]
= Trace {ACOV(Xy)N]p [@p(X,Y)] AT}

< Trace {AIE( XY)nP [@P(X, Y) {®p(X, Y)}T} AT}

— 4 - Trace {AE(va)NP [ﬁQ(X) {fO(X) — Y}2 Vof (X;0%){Vof (X; 9*)}T] AT} (100)

€902 (14 Cy)? ;0" 10"} AT
< 20} (1+ Cu)?* Trace § ABx oz, [2Vof (X;67) {Vof (X;07)} 7| A

= Ip(0)

= 202 (1 + Cy)? Trace {AIP (6%) AT} ,
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and
Vg(A) i= Ex~gy [|A {90(X) - Exvay [a(X)]}]
= Trace {ACOVXNQX [Po(X)] AT}
< Trace {AE Xy [CPQ(X) {@Q(X)}T} AT}

— 4 - Trace {AEXNQX [{f (X;0%) — fo(X)}2 Vof (X;6%){Vof (X%B*)}T] AT} (101)

2 (1 + Cy)” Trace { AEx. g, [Wef (X;60%) {Vof (X; 9*)}T} Al

-~

= Io(67)

= 2(1 4 C)* Trace {AIQ (07) AT} ,

where the steps (g) and (h) follow by Assumption 4 on the black-box ML estimates p : X — Ry and
fo: X = R. Now, let K := max {C {I@l (0*)} ,C {I@é (0*)}} € (0,400). By noticing that
A0 +z)=2z= —I@ (6") g, it follows from the inequality (97) that while being conditioned
on the event Ap N &; (6;1@1 (0*)) N&(9),
Ror (8" + z) — Ror (6%)
< Exery [{0(X) = p"(X)} {fo(X) = £ (X507} [2{A(0)} VoS (X;07) +{A(0)} V5F (X:67) A(©)]]

-5 T @) a5 g (5) (i + i ) el + 2
S By [100X) — 0O} A(X) — £ (6500} 2480} Vs (X:07) + {A0)} V3 (x:69 20)]]

1o ) s d 1 1
— -z Ig (0 2By - K* (1 07 (1 )" 1 - —

57 (0%)z + 2B, (1+ Car)? (1 + Cip)*log? ((5 <\/@ n@)

Trace {Ip (0*)1@2 (9*)} Trace
+ (102)
np
2 5 (d 1

+ BBy - K2 ||Z51 (6%)|| log2 <> < + — <+

172 H Q (6% op & ) np  nQ

3

3 5 Trace {I]p )} Trace {I@l (0*)}

+ §B3 : KS (1 + Cdr)3 (1 + C'rf)?) IOgE < > + n
Q

2 — *
+ BB K Hle (6%)

2o (5) ()
log?({ < || —+— ),
op 1) np  NQ
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where the step (i) utilizes the bound (99) together with the following simple inequality:
(x4+y)" <2 @ +y"), V(x,y,n) €Ry xR, x N.

On the other hand, for every 8 € B,.5) (6%), one can observe by taking advantage of the lower
bound (98) that while being on the event Ap N E3(9),

Ror(8) — Ror (67)
> Exery [{5(0) = 5 (O} fo(X) = £ (X:0")} [2{A(0)} Vaf (X;67) +{A(0)} V3f (X:67)A(0))]
£ AO) 2} To (07 {A(6) 2} — ;2 To (6)

- %BQ (K (1+ Ca)* (1+ Cp) log? (‘;) ( (103)

1 1
N n@)
\l Trace {I]p (9*)1@2 (0*)} . J Trace {I@l (9*)}

np ng

3

(SIS

9 3 3 3
283 K (1 +Cdr) (1 —I-Crf) log - o

(?) J Trace {Ip (0*)1’@2 (0*)} . J Trace {I@l (9*)}

Subtracting the bound (102) from (104) yields that on the event Ap N &1 <5 i Ig 1 (9*)) N&y(9),

ﬁDR(Q) — 7/€DR (0" + 2z)
> 5 (806) ~2) o (6) {A(6) )

2

\l Trace {Z[p (9*)1@2 (0*)} . J Trace {I@l (0*)}

np nQ
ool (@
o B\5
43

+ 663 K3 (1+ Cdr)3 (1+ Crf)3 log <gl>

\] Trace {Ip (0*)1@2 (0*)} . J Trace {I_l (0*)}
np
o (5) G i) |
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for every 0 € B,.(5) (6”). At this point, we consider the d-dimensional ellipsoid

() = {9 e Re: % {A0) — 2} T (67) {A(6) — 2}

13 2 2 2 3 d 1 1
< — . — R -
<5 By - K2 (14 Cg)° (1 + Cy)” log2 <5> <\/TLTP+ n@)

J Trace {Ip (0*)1@2 (9*)} \l Trace {I@l (0*)} 2
+

np nQ
2 5 (d 1 1 1 1)\
log> () (Z=+——=) | —+— (105)
op np nQ np nQ
3
2

43 d
+ EB?’ CK3 (14 Ca)® (1 + C)? log 5)

J Trace {I]p (0*)1@2 (0*)} N \l Trace {I_l (0*)}
np
3 A1 1y
ot () () |

+ BB, - K2 HI@l (6")

+§B§Bg K3 HI@I (6%)

Then from the inequality (104), it follows for every 8 € B,.5) (6*)\I'(9) that Rpr(0)—Rpg (6* + 2) >
L1 * . —1 * _ —1 * _
0 on the event Ap N &; (5,IQ (0 )) N &(9). Together with HI@ (67) o Amax {IQ (6 )} =
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W, we obtain for any 6 € T'(9) that

1A(6) — 23

<138, K2 (1+ Ca)’ (1+ C)” 25" (69)

[N]I9Y)
/N
SO R-Y
N~——
/N
5 -
]

_l’_
3|
=]
~——

log
P

O]

\l Trace {Ip (9*)1@2 (9*)} . $ Trace {I@l (0*)} 2

np nQ

+2B2B, - K2 HI@l (6%)

3log 4 (L —1—L i—i‘i 2

o o \5) \Vme | yno) \np | ng (106)
43

+ 583 K3 (14 Car)® (1+ Cip)? HI@I (67)

d

p 5

3

\l Trace {Ip (0*)1@2 (9*)} . $ Trace {I@l (0*)}]

np nQ

oo (5) (i)
log” | = —+— .
op (5 np n@

46

4 —1 /p*
+ 5BiBs - K*||75 (6)
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Thus, the triangle inequality implies on the event &; (6 i 1o ! (0*)) that for any @ € I'(d), one has

1A©)]13 < 2[|A(6) — 23 + 2 ||zl

log

op
Trace { Zp (%) 52 (6%) Trace { o' (6%)
[mfEem e}, e
np nQ
® o <d> <1+1> (1+1)2
op & ) A/ T /T np nQ
86
+ 3B K (1+Ca)* (14 C)* 751 (607)|  10g?

‘f
5
Trace {Ip (67) T3 (0*)} Trace (107)
np +
4 4 (d
. (5) (W )

0)
< 268, K2 (1+ Ca)’ (1+ G 25" (09)

N|w

/‘\
N——
/N
3l

~

_|_

3l
&
N———

+AB2B, - K? HI@l (6")

log

8 1
+ BBy - K HIQl (6%)

d
+ 8K? (14 C’dr)2 (1+ Crf)2 log <5>

\l Trace {I[p (0*)1@2 (9*)} . J Trace {I@l (0*)}

np nQ

o (5) G+ 5)
log"( <] |—+—) ,
op 0 np nQ

4B K2 HI@l (6%

where the step (j) make use of the consequence (99) from Lemma 12 with A = Iy ! (6). In order
to guarantee that

2

1) np nQ

log <d> J Trace {Ip (9*)1@2 (0*)} . \l Trace {I@l (9*)}
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is the leading term, we only need it to dominate the remaining terms. In particular, if min {np, ng} >
k- Nilog (%l), then one can conclude from the bound (107) that on the event &; <5; I@l (0*)),

d
IA®)IE < 9 1+ Ca? 1+ G §)

2
Trace {I@l (0*)} (108)
np + nQ

Trace {Ip (6%) I@Q (0*)}

= ()
for every 8 € I'(9). To sum up, we have established the following conclusions so far:

(FACT A) On the event ApN &, (5; I@l (0*)> N&(0), we have 7€DR(0) — RpRr (0" 4+ z) > 0 for every
6 € B,(5 (67) \ T'(9).

(FACT B) On the event &; (6;1@1 (0*)) we have I'(9) C B, (s) (6%) if min {np,ng} > k- N log (g).

Lastly, it is time to put everything (FACT A & B) together to establish the part (i) of Lemma 11.
Towards this end, let us claim that on the event ApN&; (5; I@l (0*)) NE2(0), Ror : RY — R attains

a local minimum in the ellipsoid I'(§) € R? if min {np, ng} > x-Ni log (). Due to its continuity
together with the compactness of the d-dimensional closed ball B,.(5) (0*) C R?, the empirical DR

risk Rpg : B, (5) (6*) — R achieves a global minimum, and therefore it becomes a local minimum
of Rpr : R? — R. Let 8 € argmin {ﬁDR(G) L0 € B, (9*)}. Then if @ € B, 5 (07) \ T(),
(FACT A) implies

~ _ —~ N k) ~ _
Ror (0) > Ror (0" +2) > Rpr (0)
which yields a contradiction, where the step (k) follows since 8" + z € T'(5) C B,.(5) (6%), which

holds by (FACT B). Hence, one can conclude that 0 € T'(0) as desired. Assumption 6 implies that
the global minimum of the empirical DR risk Rpr : R? — R belongs to the ellipsoid I'(§) C R?

on the event Ap N &; ((5; I@l (0*)) N &(6), i.e., on the event Ap N &; ((5; I@l (0*)) N&(9),

éDR S F((5) - BT((;) (9*) , (109)
provided that min {np, ng} > « - Nj log (%).

In the sequel, we shall work with the high-probability event Ap N &; <<5 i Ig ! (0*)) N &() in

order to further establish the part (ii) of Lemma 11. Because Opr € I'(6) while being on the event
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ApN & (6;1@1 (0*)) N &(6) provided that min {np, ng} > & - N log (%l), it follows that
7 @) {a (00) -2}

= {A (éDR> - Z}TIQ (67) {A (éDR) — z}

<13By - K2 (1+ Cg)? (14 Ci)*log <d> <\/1Tp 1@)

J Trace {IIP (0*)2@2 (9*)} N J Trace IQl } 2

np
2 a(d 1+1 1+12 (110)
w0 \3)\Vme " ymg) \m g

—i—%lgg-K?’ (1+Cdr) (1+Crf log§<

Trace {Ip (6%) I@Q (07) } Trace {I
np
3 d\ (1  1)°
o (5) (e o)
op & 0 np nQ

_1
On the other hand, one can readily apply Lemma 12 by letting A = Z,* (6") to obtain

2

N|w

1 2B2B, - K HI@l 6%)

> Q.
S~

,_.
W—/

+ gzs{)zsg - K*|75" (67)

1
I (0%)z

2 1
= HI@ 2 (09 g

(d 1 1
log 7_,_7
P

1) n n
n

)|

JTrace I]p 0", (0*)} d
)]
Q

@
< K2 | V2 (14 Cyg) (1 + Cit) 4 log )

(d 1
log —+ —
op ) np

(111)
nQ

+ By || Z, (9*)
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Trace { Zp (0%) " (6%)
<AK?(1+ Cy)? (1 + Ci)* log <§> J { - “ } + 4
P

l 2
1O2<)<1 1)
op ) np  NQ

_1 _1
ontheevent & | 6; IQ 2 (0%) |, where the step (1) makes use of (100) and (101) with A = IQ 2 (07).

+2B? . K? HZ@l (6")

Thus, we obtain by taking two pieces (110) and (111) collectively that while being on the event
1
A(d) = {AP Né& (6;1@1 (9*)> N 52(5)} Né& (5;1(@2 (9*)) ’

one has
2

2

13 (6") (éDR - 9*)

2 (6" A (60r) z

275 0 {4 (60x) - o)

2
<268, - K% (1+ Car)® (1 + Cip) log? <d> (1 + 1)

2

1
2+2‘I&(0*)z

J

J Trace {Ip Cly (9*)} . \l Trace {I@l (0*)}
np

2 E(d)(l ) (i)
log? (< | (—+— ] —+—
op ) np nQ np nQ (112)

-l- 83 K3(1+Cdr) 1+Crf log?

J Trace {Ip (0%)Z, \l Trace
np

+ 8383 K3HI (6")

+4B2B, - K? HI@l (6%)

3

]P>

+
np nQ

+8K2 (14 Car)? (1 + Cyp)? log

1 2

4B K2 HI@l 0",

{ Trace I[p (0%) Iy (0*)} d
i
(5 np

nQ
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when min {np,ng} > - N7 log (), where the step (m) follows due to the triangle inequality. To

guarantee that
2

J Trace {Ip (0" Z5' (9*)} y
log <) T —
) np nQ

becomes the leading term, it suffices to make it dominate the remaining terms. In particular, when-
ever min {np,ng} > k- max {N1, N2} log (%), then it follows directly from the inequality (112)
that while being on the event A(J), we have

2
<9K? (1+ Cdr)2 (1+ C’rf)2 log <gl>

Hzé @) (00— 0) |

Trace {I[p (9*)1@1 (0*)} (113)

+ -
np ng

Hence, while being on the event A (), the desired conclusions (i) and (ii) both hold if min {np, nQ} >
k- max {N7, N2} log (%). This completes the proof of Lemma 11 since

(P* & QF™) {A0))
_ (pone o 210 71 (g* T3 (g
- (IP’ ® Q% ) & (6,IQ C )) NEB) NE (552 (67)
(n)
>1-— (P®np®(@;82n@>{(@npxxn@ \51 (571- 1 )}
- (B @) {(07 x Xug) \ £:(6))
_ (P@np ® @E@}W@) {(@mp X XnQ) \51 <5;I@2 (9*))}
(©)
> 1— 86,
where the step (n) arises from the union bound, and the step (o) holds true due to Lemma 12 and 13.

D.1.1. PROOF OF LEMMA 12
For notational simplicity, let g := VeRbr (O]{Dmp, X(%n@> (0")—E |:V97$,DR (OI[J>

1inp>
P Q
under (O1 np> Xling

x%,,) (6]

) ~ Pe"% Q&Q. Then, we obtain from the equation (72) that

- (ﬁ - ]P’) [@p(X,Y)] + (@X - QX) [Bo(X)] (P2 @ QL2) -almost surely, ~ (114)

where P € A (X x R) and Qx € A(X) denote the emplrlcal distributions for the np labeled source
samples O .np and ng unlabeled target samples X1 ng respectively, i.e., P := % > 5( XPYF)

and QX = % Zn‘@ (5X@, and the functions ®p : X x R — R% and Pg: X — R< are defined as
(88).
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Now, we fix any matrix A € R?*¢, One can readily find that
|ADp(X,Y )|, = 25(X) ‘Y - fO(X)’ [AVef (X;0%)|y < 2Ca (1 + Cir) b1 [|Afl,, P-almost surely,

which immediately yields

Bo(a) i= in {t € (0,00) : Eqxyyor [exp { (HA{%(X,Y) —Eoz,yw [%(X,Y)]}Hz) H . 2}

4Cq (14 C) by ||A]l\
< inf{tE(O,—i—oo):E(X,y)Np [exp{( a (1 F trf) L ”"p> }] gz} (115)

_1
S Bl ”AHop (lOg 2) h

for every a € [1,4+00). By virtue of Lemma 3, there exists an absolute constant Cp(A.) € (0, +00)
such that for any 6 € (0, 1], it holds by utilizing the observation (115) that

Ve(A) log (%)

H (]?D N P) [AZp(X, Y)]Hz <Cp(A) + B ”AHop (log 2)_§

) (116)
1 BulAly (og)E | log (2)

VP(A) np

with probability exceeding 1 — % under Oy.,, ~ P®"? forevery a € [1,+00). By taking @ — +00
in the inequality (116), one can conclude that

o ({5 ¥) morcxl, <6

log (%)

5 (117)
2

9

+ B HAHop' > 1=

Ve(A)log (%)
np

where Vp(A) 1= E(x y)p {HA {Pp(X,Y) = E(xy)p [Pr(X, Y)]}H;}

On the other hand, it can be observed that

|ABG(X)]l, = 2| (X;0) = fo(X)| | AVar (X:07)]ly < 2(1+ Cut) by Al

which directly implies

Bufa) i {t (0 4o0) [exp {(IIA{%(X) “Exea, [%(X)]}HQ)“H . 2}

< i 4(1 + Crf) bl ||AHop :
< infqt€ (0,+0) : Exy)wp |exp ” <2 (118)

_1

=4 (14 Cit) by [|All,, - (log2) "=
_1
< By Al (log2) ™=
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forall & € [1,400). Applying Lemma 3, one can see that there exists a universal constant Cg(A) €
(0, +00) such that for any 6 € (0, 1], we have from the fact (118) that

(@~ macen], zcomm) | i e

) (119)
oot 3 BrllAllop (og2) 7 | log (3)

V]}D(A) nQ

with probability greater than 1 — g under X ~ @?}n@, for all v € [1, +00). By taking o« — +00
in the bound (119), it follows that

0 ({](@x - ax) haacvi], <coa

Vo(A) log (24) L BLIAlL log (22) R (120)
nQ P n

where Vo(A) i= Ex~gy [|A{2(X) ~ Ex-ay [2g(X)]}I]

Lastly, it is time to put all pieces together. By making use of the union bound together with two
conclusions (117) and (120) and setting C(A) := max {Cp(A),Cq(A)} € (0,+00), one has

A {50 (0 X80) 0) (01 ) v [T (00,36 ]

(1@ - IP) [A®p(X,Y)] + (@X - Qx) [A®q(X)] H2

(B 2) w1+ (B - ) iameco|

2

o
7

2

<c(a) \/VP(A) oz (5) \/VQ(ALZg () 1 5y 1Al -tog <2d> < Lyl )

np 0 Fp %

with probability at least 1 — & under (OI{”W’ X2 @> ~ PEme @ Q'2, where the step (a) follows due
to the triangle inequality, as desired.

D.1.2. PROOF OF LEMMA 13

For notational simplicity, we let H := VgﬁDR (Olimp, X(%nQ> (6")-E [V%ﬁDR (Olimp, X?:n@> (0*)}

for (OI{D:RP, X(l@mQ> ~ P& & Q’)‘(@. Then, one may express H by using the fact (72) that
1 & 1 &
H=—Y U+ —-YVvY (121)
np Zz; t nQ ]z; J
where

UF =25 (xF) {fo (XF) — 7} Vs (xF:07)
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—2E(x,y)~P [ﬁ(X) {fo(X) - Y} Vol (X; 9*)} :

V9i=2 [vgf (X;@;e*) {ng (X;.@;@*)}T (122)
o (350) 4 (57) (x50
—2Exqy |Vof (X:67) (VoS (X:09} + {f (X;67) — o(X) } V5 (X:67)].

for each (7, j) € [np] X [ng]. At this moment, one can readily realize the following facts of the d x d
random matrices { U} : i € [np] }:

* The operator norm of ng can be bounded as

o

op

o (X7) {fo (xF) - vF} vis (xF:07)

+ 2E(x y)~P [Hﬁ(X) {fo(X) - Y} Vo (X;60%)

<2

op

] (123)
op

2 40 (14 Cy) vaf (XF; 0*)

op
(b)
< A4C4 (1 4 Cy) by

for every i € [np], where the step (a) holds P-almost surely by Assumptions 3 and 4, and the
step (b) comes from Assumption 5.

» Using the upper bound (123), one can obtain (U]f))2 =< 031, for all i € [np] P-almost surely,
where
02 :=16C2 (1 + C)? b3.

We can combine the above properties on the d x d random matrices {U? RS [np]} together with
the matrix Hoeffding inequality (Theorem 1.3 in Tropp (2012)) to reach

1 s P n[P’tQ
Tt o (124)
nPtQ

=2dexp{ —
P { 128C2 (1 + C)2 13

)

for any ¢ € R. Thus, it follows for any ¢ € (0, 1] that
n

Ly

np “ ’
=1

with probability at least 1 — § under the probability measure P®"?,

log (%)

< 8V2C4 (1 + Cit) by
np

op

(125)

Likewise, one can make the following observations on the d x d random matrices {V;Q :j € [ng) }:
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* The operator norm of V? can be bounded as

Q
v

, <9 Hvaf <X;.@;0*> {Vef (X;@;G*>}T )
c2r (o) i (x9)) v (x50

+ 2Ex~Qx [Hvef (X;0%){Va [ (X; 0*)}TH0J

op

A

+ 2Ex~gy [H{f (X:6%) = fo(X) } V3 (X;6%)

- frer (20
+2 \f (X;Q;o*) —f (X;@)‘ vaf (X;.@;e*)
+ 2Exgy [IVof (X:6%)3]

+ 2B £ (X307 - W(X)| V37 (x; 00,

(126)

op

(©)
< 4{b + (1+ Cr) ba}

for every j € [ng], where the step (c) holds due to Assumptions 3 and 4.

2
* Using the upper bound (126), one can obtain (V?) = aéld for every j € [ng], where
0 =16 {B3 + (1 + Cig) b} .

Q.

Making use of the above findings regarding the d x d random matrices {V b

J € [ng] }, the matrix
Hoeffding inequality then reveals that

1 & not?
®ng Q Q
=l ° (127)

=2dexp{ — th2
128 {62 + (1 4 Cif) by}

for every ¢t € R . The inequality (127) tells us for any ¢ € (0, 1] that

! %V@ < 8VZ (b + (14 C) bo} log ()
ng 2= i S 1 rf) 02 nQ (128)
= op
with probability at least 1 — § under the probability measure Q?}n‘@. By combining two inequalities
(125) and (128) together with the union bound and replacing § by g completes the proof of Lemma
13.
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