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Abstract

Distribution shift between the training domain and the test domain poses a key challenge for modern

machine learning. An extensively studied instance is the covariate shift, where the marginal distribution

of covariates differs across domains, while the conditional distribution of outcome remains the same. The

doubly-robust (DR) estimator, recently introduced by [36], combines the density ratio estimation with a

pilot regression model and demonstrates asymptotic normality and
√
n-consistency, even when the pilot

estimates converge slowly. However, the prior arts has focused exclusively on deriving asymptotic results

and has left open the question of non-asymptotic guarantees for the DR estimator.

This paper establishes the first non-asymptotic learning bounds for the DR covariate shift adaptation.

Our main contributions are two-fold: (i) We establish structure-agnostic high-probability upper bounds

on the excess target risk of the DR estimator that depend only on the L2-errors of the pilot estimates and

the Rademacher complexity of the model class, without assuming specific procedures to obtain the pilot

estimate, and (ii) under well-specified parameterized models, we analyze the DR covariate shift adaptation

based on modern techniques for non-asymptotic analysis of MLE, whose key terms governed by the Fisher

information mismatch term between the source and target distributions. Together, these findings bridge

asymptotic efficiency properties and a finite-sample out-of-distribution generalization bounds, providing

a comprehensive theoretical underpinnings for the DR covariate shift adaptation.

1 Introduction

Classical supervised learning assumes that the training and test data are drawn from the same distribution

[80, 25]. In practice, such an assumption is rarely met. For instance, credit models are typically trained on

approved customers but deployed on rejected applicants; medical imaging data vary across hospitals due to

differences in equipment and protocols [41, 24]; and in natural language processing, labeled corpora such as

the Wall Street Journal, differ sharply from the domains such as arXiv [30]. For all these cases, distribution

shift between training and test domains undermines predictive performance.

A significant particular case of such a distribution shift is known as the covariate shift [64, 56, 54], where

the marginal distribution of covariates X varies across the domains while the conditional distribution of Y |X
remains the same. Covariate shift is well-documented in healthcare [84, 26], image classification [61], remote

sensing [75], sentiment analysis [5], and speech and language processing [85, 27, 17].
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The problem of covariate shift adaptation assumes access to labeled samples from a source domain and

unlabeled covariates from a target domain, with the goal of learning a predictor with a desirable performance

under the target distribution. This problem has been central to the literature of transfer learning and domain

adaptation [66, 68, 65, 54, 36], especially when the target labels are scarce or costly to obtain.

A core difficulty lies in estimating the covariate density ratio between the source and target domains. The

standard approach – plugging-in an estimated covariate density ratio into an importance-weighted empirical

risk minimization [66, 68, 71, 57] – turns out to be highly sensitive to the estimation errors of the density

ratio and performs poorly unless the estimator converges at a nearly parametric rate. To address this, [36]

suggests a doubly-robust (DR) estimator, which augments the importance-weighting with a pilot regression

model and leverages double machine learning techniques [9, 10, 11, 12, 18]. Their results establish the

asymptotic normality and
√
n-consistency of their DR estimator under parametric models, even when the

pilot estimates converge slowly.

Yet, the literature of covariate shift adaptation has centered exclusively on achieving asymptotic results.

It remains unclear how the DR covariate shift adaptation performs in finite-sample regimes. This paper aims

to close this gap. Our contributions can be summarized as follows:

(i) Structure-agnostic guarantees: We first derive the first non-asymptotic upper bounds on the excess

target risk for the DR estimator, depending only on the product of the statistical rates of convergence

of the pilot estimates, without assumptions on how they are obtained.

(ii) Fast rates for parameterized models: By studying the DR estimator through the lens of modern

non-asymptotic theory of maximum likelihood estimation (MLE), we prove that the estimator achieves

a rate of convergence of the order O (1/n) under covariate shift.

Together, these results bridge asymptotic efficiency results and a finite-sample out-of-distribution (OOD)

generalization bound, providing a comprehensive theoretical underpinning of the DR covariate shift adapta-

tion.

1.1 Related works

We take a moment to discuss subsets of related prior works in covariate shift, doubly-robust estimation, and

structure-agnostic estimation framework.

Covariate shift The study of covariate shift can be dated back to the seminal paper by [64]. This paper

investigates the impact of covariate shift under parametric models with the vanilla MLE and proposes the

importance-weighting (IW) method, which has a remarkable improvement if the underlying regression model

is mis-specified. It also establishes the asymptotic normality for a weighted version of MLE under covariate

shift, but no finite-sample learning bounds are provided. Later, [67] further extends this work by studying an

unbiased estimator under the L2-generalization error. Motivated by these fundamental works, there has been

a flurry of follow-up works for parametric covariate shift. [51] introduces a statistical minimax framework and

gives lower bounds for out-of-distribution generalization under the regression models of linear and one-hidden

layer neural networks. [49] takes a closer inspection on the minimax optimal estimator for fixed-design linear

regression under covariate shift. [86] studies linear models under covariate shift where the learner has access

to a small amount of target labels. In stark contrast, this work focuses on the covariate shift problem where

the learner has no access to target labels.

2



Beyond the cases of parametric covariate shift, [14] investigate the IW estimator under the framework of

statistical learning and provide a non-asymptotic upper bound on the excess target risk for the IW estimator.

Also, there has been a strand of recent works on well-specified non-parametric models under covariate shift.

[43] investigates the non-parametric classification problem over the class of Hölder continuous functions and

provides a new fine-grained similarity measure. Within a focus on the class of Hölder continuous functions,

[55] introduces a novel measure of distribution mismatch between the source and target domains. Under the

setting of reproducing kernel Hilbert space (RKHS), [50, 21] establish the optimal learning rates of kernel

ridge regression (KRR) estimators. In particular, [50] proves that KRR estimation using a carefully selected

regularization parameter is miniax optimal provided that the covariate density ratio is uniformly bounded,

and a re-weighting version of the KRR estimator using truncated covariate density ratios is minimax-optimal

if the covariate density ratio has a finite second-order moment. On the other hand, [83] suggests the strategy

of learning a predictive model using pseudo-labels. As our final remark, over-parameterized models, such as

high-dimensional models and classes of neural networks, under covariate shift has drawn increasing attention

from the researchers [7, 29, 28, 73]).

Doubly-robust (DR) estimation Doubly-robust (DR) estimation combines an outcome regression with

a model for treatment or selection (e.g., the propensity score), guaranteeing its consistency if at least one is

correctly specified. Its foundations lie in the seminal paper by [60] on semi-parametric theory and influence

functions, and were formalized for applications by [3]. Some implementations include the augmented inverse

propensity weighting (AIPW) [60, 59, 3] and target maximum likelihood estimation (TMLE) [78, 77], both

of which leverage influence functions to correct bias. A corpus of recent studies integrate modern ML

techniques for flexible nuisance estimation together with the Neyman orthogonalization and sample splitting

[9, 10, 76, 38] for retaining valid inference. The DR estimation framework has expanded to settings such as

difference-in-differences [62, 52], instrumental variables [53, 46], and censored data [1]. While the DR methods

achieve robustness and potential efficiency, they require careful handling of finite-sample bias [35, 19], near-

positivity violations [13], and model diagnostics [3, 60], since the correctness of at least one nuisance estimate

remains crucial.

Structure-agnostic estimation The structure-agnostic estimation framework stands for a class of statis-

tical methods for estimating functionals or treatment effects without assuming any parametric or structural

models for the underlying data generating process. [2] establishes the fundamental limits for such functional

estimation, characterizing the optimal rates achievable when only minimal assumptions – such as smoothness

or boundedness – are imposed. [32] demonstrates that the DR estimators both for the average treatment

effect (ATE) and the average treatment effect on the treated (ATT) attain the minimax optimal rates under

the structure-agnostic estimation framework. Their findings underscore the effectiveness of the DR learning

in causal inference, particularly when relying on flexible ML algorithms for nuisance estimation. [31] further

studies the sensitivity of structure-agnostic estimation procedures to noise, highlighting several cases where

standard estimators fail to achieve normality or efficiency. Finally, [6] extends the framework by formalizing

the DR inference under smoothness conditions. Collectively, these recent works aim to construct a rigorous

framework for statistical estimation and inference that minimizes reliance on structural assumptions while

achieving near-optimal statistical guarantees.
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2 Problem formulation

Let X denote the covariate space (a.k.a., the feature space). Consider the source distribution P ∈ ∆(X× R)
and the target distribution Q ∈ ∆(X× R). Also, let PX ∈ ∆(X) and QX ∈ ∆(X) denote by the marginal

distributions of X under P and Q, respectively. We further define PY |X : X → ∆(R) and QY |X : X → ∆(R)
to be the conditional laws of Y given X under P and Q:

PY |X (· | x) := P (Y ∈ · |X = x ) and QY |X (· | x) := Q (Y ∈ · |X = x ) .

Assumption 1 (Covariate shift model). For every x ∈ X,

EP [Y | X = x] = EQ [Y | X = x] . (2.1)

Thus, the two distributions share the same Bayes regression function f∗ : X → R,

f∗(x) := EP [Y | X = x] = EQ [Y | X = x] , x ∈ X.

Here, we emphasize that Assumption 1 does not require PY |X = QY |X ; only their Bayes regression functions

must coincide. In fact, this assumption is weaker compared to the classical covariate shift model [64], which

posits a full equality of the conditional distributions.

Observational data. We observe nP labeled samples from the source distribution P,

OP
1:nP

:=
(
OP

i :=
(
XP

i , Y
P
i

)
: i ∈ [nP]

)
∼ P⊗nP ,

and nQ unlabeled target covariates,

XQ
1:nQ

=
(
XQ

j : j ∈ [nQ]
)
∼ Q⊗nQ

X .

Hence, the labels are available only in the source domain.

Risk and excess risk. Given a function class F ⊆ (X → R), we define the µ-risk Rµ : F → R+ by

Rµ(f) := E(X,Y )∼µ

[
{Y − f(X)}2

]
, µ ∈ ∆(X× R) .

Given any µ ∈ ∆(X× R), let f∗
µ ∈ argmin {Rµ(f) : f ∈ F} denote a µ-risk minimizer over the function class

F . The excess µ-risk is then defined by

Eµ(f) := Rµ(f)−Rµ

(
f∗
µ

)
, f ∈ F . (2.2)

Goal: covariate shift adaptation. Our objective is to construct an estimator f̂ ∈ F that achieves small

excess Q-risk EQ(f̂) with high probability.

Covariate density ratio. A central quantity in the study of covariate shift is the covariate density ratio

between the source and target distributions. We assume that the marginal distributions PX and QX are all

absolutely continuous with respect to a σ-finite reference measure µX on X. Let

pX :=
dPX

dµX
: X → R+ and qX :=

dQX

dµX
: X → R+

denote their respective densities with respect to µX. The covariate density ratio is then defined as

ρ∗(x) :=
qX(x)

pX(x)
, x ∈ X,

which is assumed to be finite everywhere throughout this paper.
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3 Doubly-robust (DR) covariate shift adaptation

Re-weighting with respect to the source distribution P yields an alternative expression of the Q-risk as the

ρ∗-weighted P-risk:

RQ(f) = E(X,Y )∼P

[
ρ∗(X) {Y − f(X)}2

]
, f ∈ F . (3.1)

The importance-weighting (IW) estimator [64] can be obtained by minimizing the empirical analogue of the

ρ∗-weighted P-risk (3.1) over F . Its key limitation is the reliance on the knowledge of the unknown covariate

density ratio ρ∗ : X → R+: a modified estimator obtained by plugging-in an estimate ρ̂ : X → R+ for the

covariate density ratio ρ∗ might have high variance and degrade its performance unless the estimation of the

covariate density ratio is sufficiently accurate.

The doubly-robust (DR) covariate shift adaptation [36] augments the IW method with a pilot regression

model, and then subtracts a squared-error correction term to cancel the leading error term incurred by the

density ratio estimation. For any given pilot estimates ρ̂ : X → R+ and f̂0 : X → R for the covariate density

ratio ρ∗ : X → R+ and the shared Bayes regression function f∗ : X → R, respectively, let us define the DR

empirical risk R̂DR : F → R by

R̂DR(f) :=
1

nP

nP∑
i=1

ρ̂
(
XP

i

) [{
Y P
i − f

(
XP

i

)}2 − {f̂0(XP
i

)
− f

(
XP

i

)}2
]

+
1

nQ

nQ∑
j=1

{
f̂0
(
XQ

j

)
− f

(
XQ

j

)}2
(3.2)

and the DR estimator as

f̂DR ∈ argmin
{
R̂DR(f) : f ∈ F

}
. (3.3)

Intuitively, the pilot regression model terms f̂0 makes the risk orthogonal to the first-order errors in ρ̂ (and

vice-versa), yielding stability even when the pilot estimates converge slowly.

Structure-agnostic estimation. Throughout this section, the pilot estimates ρ̂ : X → R+ and f̂0 : X → R
are regarded as black-boxes: the analysis only requires the pilot estimates to achieve certain statistical error

rates, not how these estimates are obtained. This structure-agnostic estimation framework [2, 32, 39, 6, 31]

reflects practice, where the pilot estimates ρ̂ and f̂0 can be obtained by leveraging a growing body of modern

ML methods (e.g., LASSO [4, 82], tree-based algorithms [72, 81], and deep neural networks [8, 63]). Later,

our finite-sample guarantees will be directly stated in terms of their estimation errors.

4 Structure-agnostic learning bounds for DR covariate shift adap-

tation

This section aims to develop finite-sample structure-agnostic learning guarantees for the doubly-robust (DR)

estimator. We first state the standing assumptions, introduce the complexity measure utilized in our analysis,

and finally present a high-probability bound on the excess Q-risk of the DR estimator (3.3) together with a

concrete illustration based on classes of Frobenius-norm-bounded neural networks.

In this section, we consider the structure-agnostic perspective that treat the given pilot estimates
(
ρ̂, f̂0

)
as black-boxes; our bounds depend only on their estimation errors measured by the mean-squared error with

respect to PX .
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4.1 Assumptions

We begin by introducing the minimal assumptions under which our non-asymptotic analysis holds.

Assumption 2 (Well-specified model). f∗ ∈ F .

Assumption 3 (Uniform boundedness). We have sup {∥f∥∞ : f ∈ F} ≤ 1 and |Y | ≤ 1 almost surely under

the source distribution P and the target distribution Q.

Assumption 4. The pilot estimates ρ̂ : X → R+ and f̂0 : X → R of the covariate density ratio ρ∗ : X → R+

and the shared Bayes regression function f∗ ∈ F , respectively, satisfy

∥ρ̂∥∞ ≤ Cdr < +∞ and
∥∥∥f̂0∥∥∥

∞
≤ Crf < +∞ (4.1)

for some universal constants Cdr, Crf ∈ (0,+∞).

Remark 4.1. We note that the uniform boundedness assumption ∥ρ̂∥∞ ≤ Cdr < +∞ on the black-box ML

estimate ρ̂ : X → R+ is standard for the case of the bounded ground-truth covariate density ratio ρ∗ : X → R+.

In particular, the estimation procedures built upon the density ratio matching under the Bregman divergence

[70, 69] including the least-squares importance fitting (LSIF) [33], kernel mean matching (KMM) [23], kernel

unconstrained LSIF (KuLSIF) [34], Kullback-Leibler importance estimation procedure (KLIEP) [71], logistic

regression-based density ratio estimation [70, 69], and deep density ratio estimation [37, 87], typically focus

on the minimization of a specific empirical risk over a uniformly bounded hypothesis class.

4.2 Uniform convergence and Rademacher complexity guarantees

Now, we turn our attention to analysis of the DR estimator (3.3) in finite-sample regimes based on uniform

convergence arguments. The key complexity measure is the Rademacher complexity of the f∗-shifted version

of the function class F ⊆ (X → R):

F∗ := {f − f∗ : f ∈ F} ⊆ (X → R) .

We first recall the definition of the Rademacher complexity for completeness.

Definition 4.1 (Rademacher complexity). Given any function class G ⊆ (X → R), the empirical Rademacher

complexity of G with respect to n sample points x1:n = (x1, x2, · · · , xn) ∈ Xn is

R̂n(G) (x1:n) := Eσ1:n∼Unif({±1}n)

[
sup

{∣∣∣∣∣ 1n
n∑

i=1

σig (xi)

∣∣∣∣∣ : g ∈ G

}]
. (4.2)

The Rademacher complexity of G with respect to a probability measure µ ∈ ∆(X) is defined by

Rµ
n(G) := EX1:n∼µ⊗n

[
R̂n(G) (X1:n)

]
= E(X1:n,σ1:n)∼µ⊗n⊗Unif({±1}n)

[
sup

{∣∣∣∣∣ 1n
n∑

i=1

σig (Xi)

∣∣∣∣∣ : g ∈ G

}]
.

(4.3)

With these preliminary notions in hand, one can state a structure-agnostic high-probability upper bound

on the excess Q-risk of the DR estimator (3.3) that depends only on the L2-errors of the pilot estimates and

the Rademacher complexity of F∗ under PX and QX .
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Theorem 4.1 (Structure-agnostic upper bound I of the DR estimator). With Assumptions 1–4, the doubly-

robust (DR) estimator (3.3) achieves the Q-estimation error

EQ
(
f̂DR

)
= EX∼QX

[{
f̂DR(X)− f∗(X)

}2
]

≤ 4 ∥ρ̂− ρ∗∥L2(X,PX) ·
∥∥∥f̂0 − f∗

∥∥∥
L2(X,PX)

+ 12 (2 + Crf) log

(
3

δ

)(
Cdr

nP
+

1

nQ

)
+ 4 (1 + Cdr) (2 + Crf)

√
2 log

(
3

δ

)(
1

√
nP

+
1

√
nQ

)

+ 8 (1 + Cdr) (2 + Crf)

√
log

(
3

δ

)(RPX
nP

(F∗)
√
nP

+
RQX

nQ
(F∗)

√
nQ

)
+ 8Cdr (1 + Crf)RPX

nP
(F∗) + 8 (3 + Crf)RQX

nQ
(F∗)

(4.4)

with probability at least 1− δ under the probability measure P⊗nP ⊗Q⊗nQ
X .

The proof of Theorem 4.1 is deferred to Appendix B.2. Let us make use of the notation

Errρ := ∥ρ̂− ρ∗∥L2(X,PX) and Errf :=
∥∥∥f̂0 − f∗

∥∥∥
L2(X,PX)

.

The leading bias term in (4.4) can be rewritten as the product Errρ ·Errf . This key observation leads to the

following two concrete implications:

(I1) Having just one good pilot estimate suffices. By assuming either Errρ = o(1) or Errf = o(1) as

min {nP, nQ} → ∞ and the remaining term is bounded, one can obtain Errρ · Errf = o(1). Hence, the

DR estimator is still consistent even when one of the pilot estimates is inaccurate; this is the finite-

sample manifestation of the double robustness phenomenon [59, 58]: the error of the one-step corrected

estimators is upper bounded by a product of estimation errors of the underlying nuisance components.

To put it another way, the DR covariate shift adaptation allows us to reduce the bias incurred by the

estimation error of the covariate density ratio through the aforementioned double robustness property.

(I2) Rate multiplication. Suppose Errρ = Õ (n−α) and Errf = Õ
(
n−β

)
, where n := min {nP, nQ}. Then,

the order of their product term scales as Õ
(
n−(α+β)

)
. In contrast, the upper bound on the excess Q-

risk of the IW estimator depends additively on Errρ, and typically requires α ≥ 1/2 to be competitive.

Thus, the DR estimator (3.3) outperforms the IW method whenever α+ β > 1/2.

Since we have trivial bounds RPX
nP

(F∗) ≤ 2 and RQX
nQ

(F∗) ≤ 2, one can simplify the excess Q-risk bound

(4.4) in Theorem 4.1 of the DR estimator as follows: With Assumptions 1–4 in hand, it follows that the DR

estimator (3.3) achieves

EQ
(
f̂DR

)
≲ ∥ρ̂− ρ∗∥L2(X,PX) ·

∥∥∥f̂0 − f∗
∥∥∥
L2(X,PX)

+

√
log
(
1
δ

)
nP

+

√
log
(
1
δ

)
nQ

+RPX
nP

(F∗) +RQX
nQ

(F∗)

(4.5)

with probability at least 1− δ.
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4.3 An illustration with Frobenius-norm-bounded neural networks

Let X ⊆ Rn0 be a bounded domain such that sup {∥x∥2 : x ∈ X} ≤ R for some radius R ∈ (0,+∞). We also

consider a collection of 1-Lipschitz activation functions {σj ∈ (R → R) : j ∈ N} that are positive-homogeneous

(i.e., σj (αt) = ασj(t) for any (α, t) ∈ R+ ×R), and that are applied element-wise. We are mainly interested

in a class of real-valued neural networks of depth d ∈ N over the domain X ⊆ Rn0 defined as

Hd (X;MF) := {NNd (·;θ) ∈ (X → R) : θ ∈ Θ(MF)} , (4.6)

where θ = (W1, · · · ,Wd) ∈
∏d

j=1 Rnj×nj−1 denotes the model parameter consists of d parameter matrices

with nd = 1, and the real-valued neural network NNd (·;θ) : X → R of depth d is defined to be

NNd (x;θ) := Wdσd−1 (Wd−1σd−2 (· · ·σ1 (W1x) · · · )) . (4.7)

Here, MF : [d] → R+ specifies upper bounds on the Frobenius norm of parameter matrices, and the parameter

space Θ (MF) ⊆
∏d

j=1 Rnj×nj−1 is given by

Θ (MF) :=

θ = (W1,W2, · · · ,Wd) ∈
d∏

j=1

Rnj×nj−1 : ∥Wj∥F ≤ MF(j), ∀j ∈ [d]

 .

A prominent example of the above construction are ReLU networks, where every σj : R → R corresponds to

applying the ReLU activation function σ(·) := max {0, ·} : R → R+. Armed with the class Hd (X;MF), let us

now introduce the function class of our interest. Let η : R → [−1, 1] be an L-Lipschitz bounded activation

function such that η(0) = 0, and define

F := {f (·;θ) := η ◦ NNd (·;θ) ∈ (X → [−1, 1]) : θ ∈ Θ(MF)} . (4.8)

For example, the inverse tangent activation function 2
π arctan(·) : R → [−1, 1] satisfies the desired properties

with L = 2
π . One can show that the Rademacher complexity of the f∗-shift version of (4.8) with respect to

any probability measure µ ∈ ∆(X) is of order O
(

1√
n

)
.

Proposition 4.1. The Rademacher complexity of the f∗-shifted version of the neural network class defined

as (4.8), F∗ := F − {f∗}, with respect to any given probability measure µ ∈ ∆(X) is upper bounded by

Rµ
n (F∗) ≤ 2√

n

LR
(
1 +

√
(2 log 2) d

) d∏
j=1

MF(j) +
√
log 2

 = O
(

1√
n

)
. (4.9)

The proof of Proposition 4.1 can be found in Appendix B.1. With Proposition 4.1 in hand, one may conclude

that the DR estimator (3.3) achieves the following excess Q-risk bound when we select the hypothesis class

F ⊆ (X → [−1, 1]) of our interest as (4.8): with probability at least 1− δ, one has

EQ
(
f̂DR

)
≲ ∥ρ̂− ρ∗∥L2(X,PX) ·

∥∥∥f̂0 − f∗
∥∥∥
L2(X,PX)

+

√
log
(
1
δ

)
nP

+

√
log
(
1
δ

)
nQ

. (4.10)

Remark 4.2. We now turn our attention to the following approach that utilizes the double/debiased machine

learning (DML) technique [9, 10, 11, 12, 18]: We first split the observed data D :=
(
OP

1:nP
,XQ

1:nQ

)
into two

subgroups D1 and D2 with the equal size, and then estimate the ground-truth covariate density ratio ρ∗ : X →
R+ and the common Bayes regression function f∗ ∈ F utilizing the first subgroup D1 to compute a nuisance

8



estimate ρ̂ : X → R+ and a pilot estimate f̂0 : X → R. A number of results from the literature of density ratio

estimation propose algorithms achieving ∥ρ̂− ρ∗∥L2(X,PX) = Op

(
min {nP, nQ}−

1
2+γ

)
as min {nP, nQ} → ∞

for any constant γ ∈ (0, 2) [34, 37]. Therefore, if the pilot estimate f̂0 : X → R of f∗ ∈ F is consistent under

the source distribution P with a rate∥∥∥f̂0 − f∗
∥∥∥
L2(X,PX)

= Op

(
min {nP, nQ}−

γ
2(2+γ)

)
as min {nP, nQ} → ∞, (4.11)

then the high-probability bound (4.10) on the Q-risk for the DR estimator (3.3) together with the class (4.8)

of Frobenius-norm-bounded neural networks (constructed using the second subgroup D2) gives

EQ
(
f̂DR

)
≲

√
log
(
1
δ

)
nP

+

√
log
(
1
δ

)
nQ

. (4.12)

To summarize, as long as the pilot estimate f̂0 : X → R for the Bayes regression function f∗ ∈ F is consistent

under the source distribution P with the rate of convergence (4.11), we are able to enhance the pilot estimate

f̂0 : X → R of f∗ ∈ F to an estimator that achieves the rate of convergence (4.12) even if it is not consistent

under the target distribution Q.

5 Learning bounds for DR covariate shift adaptation: parametric

models

This section closely examines the doubly-robust (DR) covariate shift adaptation when the underlying function

class is finite-dimensional and well-specified. Our central takeaway messages are two-fold: (i) with parametric

models, fast 1/n-type rates of convergence are attainable without assuming exact knowledge of the covariate

density ratio ρ∗; and (ii) the DR estimator achieves these rates regardless of the statistical accuracies of the

pilot estimates
(
ρ̂, f̂0

)
.

Parametric model. Throughout this section, we impose Assumptions 2 and 3 and consider a d-dimensional

parameterization

F =
{
f (·;θ) ∈ (X → [−1, 1]) : θ ∈ Θ ⊆ Rd

}
, (5.1)

with the ground-truth parameter θ∗ ∈ Θ such that f∗(·) = f (·;θ∗) ∈ F . For any pilot estimates
(
ρ̂, f̂0

)
, the

DR empirical risk specialized to the parameterized model (5.1) is

R̂DR(θ) :=
1

nP

nP∑
i=1

ρ̂
(
XP

i

){
ℓ
(
Y P
i , f

(
XP

i ;θ
))

− ℓ
(
f̂0
(
XP

i

)
, f
(
XP

i ;θ
))}

+
1

nQ

nQ∑
j=1

ℓ
(
f̂0
(
XQ

j

)
, f
(
XQ

j ;θ
))

,

(5.2)

where ℓ(a, b) := (b− a)2. We define the DR estimator specialized to the parametric model (5.1) as

θ̂DR ∈ argmin
{
R̂DR(θ) : θ ∈ Θ

}
, f̂DR(·) := f

(
·; θ̂DR

)
∈ F . (5.3)

Regularity and landscape conditions. We first make the following smoothness assumptions customary

in classical analysis of MLE [48, 44, 15, 79, 47].
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Assumption 5 (Smoothness assumptions). Suppose the parameter space Θ ⊆ Rd is star-shaped at center

θ∗ ∈ Θ, i.e., [θ∗,θ] := {θ∗ + λ (θ − θ∗) : λ ∈ [0, 1]} ⊆ Θ for all θ ∈ Θ, and

(i) For each x ∈ X, the function θ ∈ Θ 7→ f (x;θ) ∈ [−1, 1] is three-times differentiable;

(ii) There exist absolute constants (b1, b2, b3) ∈ (0,+∞)
3
such that

∥∇θf (x;θ)∥2 ≤ b1,
∥∥∇2

θf (x;θ)
∥∥
op

≤ b2, and
∥∥∇3

θf (x;θ)
∥∥
op

≤ b3 (5.4)

for every (x,θ) ∈ X×Θ.

Assumption 6 (Benign landscape of the DR empirical risk). For any realization
(
OP

1:nP
,XQ

1:nQ

)
∈ OnP×XnQ ,

the DR empirical risk R̂DR : Θ → R attains a unique local minimum, which is also the global minimum.

Here, we note that Assumption 6 is satisfied, for example, if the population version of the DR empirical risk

(5.2) is strongly convex in an open neighborhood of θ∗ ∈ Θ, and the Hessian of the DR empirical risk (5.2)

uniformly concentrates on that neighborhood.

Now, we are ready to establish an improved structure-agnostic learning bound for the DR estimator (5.3)

for parametrized hypothesis classes (5.1), which leads to faster rates of convergence. For convenience, let us

first recall the classical notion of Fisher information, which plays a critical role as a key quantity to measure

the difficulty of parameter estimation. The µ-Fisher information matrix evaluated at θ ∈ Θ is defined as

Iµ(θ) := E(X,Y )∼µ

[
∇2

θℓ (Y, f (X;θ))
]
, θ ∈ Θ, (5.5)

where µ ∈ {P,Q} and ℓ : R× R → R+ is the squared error loss. Then, one can easily observe that

Iµ (θ∗) := 2EX∼µX

[
∇θf (X;θ∗) {∇θf (X;θ∗)}⊤

]
, (5.6)

where µX(·) := µ (· × R) ∈ ∆(X) refers to the covariate marginal distribution of µ ∈ {P,Q}. We now present

our main result of this section, whose proof is deferred to Section B.3:

Theorem 5.1 (Informal, see Theorem B.1). With the parametrized function class (5.1), under Assumptions

1–6, there is an absolute constant K ∈ (0,+∞) such that with probability at least 1−8δ under the probability

measure P⊗nP ⊗Q⊗nQ
X ,

EQ
(
θ̂DR

)
= EX∼QX

[{
f
(
X; θ̂DR

)
− f∗(X)

}2
]

≤ 18K2 (1 + Cdr)
2
(1 + Crf)

2
log

(
d

δ

)[
Trace

{
IP (θ∗) I−1

Q (θ∗)
}

nP
+

d

nQ

]
,

(5.7)

provided that min {nP, nQ} ≥ κ · N ∗ log
(
d
δ

)
for some absolute constant κ ∈ (0,+∞), where

N ∗ = poly
(
d,
∥∥I−1

Q (θ∗)
∥∥
op
,
∥∥I−1

Q (θ∗) IP (θ∗) I−1
Q (θ∗)

∥∥
op

)
.

Interpretations & key implications Theorem 5.1 shows that, for well-specified parametric models, the

DR estimator (5.3) achieves a fast and instance-dependent upper bound on the excess Q-risk that decouples

the contributions of the source and target samples to the bound:

Trace
{
IP (θ∗) I−1

Q (θ∗)
}

nP
: contributed by the source data,

d

nQ
: contributed by the target data,
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up to logarithmic factors. Here, the trace factor Trace
{
IP
(
θ∗)I−1

Q
(
θ∗)} quantifies the Fisher information

mismatch between P and Q, and is the only way in which covariate shift affects the leading constant. Notably,

the excess Q-risk bound in Theorem 5.1 holds without access to the ground-truth covariate density ratio ρ∗,

and is independent of the statistical accuracies of the pilot estimates
(
ρ̂, f̂0

)
.

We also discuss some appealing attributes of DR covariate shift adaptation and its fast 1/n-type conver-

gence guarantee (5.7) for well-specified parametric models provided in Theorem 5.1:

• Fast rates of convergence under covariate shift without knowing ρ∗: The excess Q-risk bound (5.7) of

the DR estimator (5.3) matches the fast 1/n-rate behavior, where n := min {nP, nQ}, which is known to

be achievable in parametric models, yet it does so without requiring an exact knowledge (or a consistent

estimate) of the covariate density ratio ρ∗ : X → R+.

• Pilot-agnostic tightness of the rates of convergence: The rate of convergence for the DR estimator (5.3)

obtained from the excess Q-risk bound (5.7) does not degrade with the quality of given pilot estimates(
ρ̂, f̂0

)
; any black-box pilot estimates suffice.

• No boundedness assumption on the covariate density ratio ρ∗: Unlike the prior works on covariate shift

(e.g., [14, 50]), we make no boundedness assumptions on the true covariate density ratio ρ∗ : X → R,
broadening applicability of our results.

It would be worth pointing out the trace factor Trace
{
IP
(
θ∗)I−1

Q
(
θ∗)}, which is different from the trace

factors that appears in the excess Q-risk bounds for the vanilla MLE and the weighted MLE of [20]. However,

on the closer look, [20] assumes the boundedness of the covariate density ratio ρ∗, under which their excess

Q-risk bound for the weighted MLE (see Theorem 5.2 therein) can be translated to the same trace factor as

in the bound (5.7) of Theorem 5.1.

6 Discussion

This paper establishes the first finite-sample guarantees for doubly-robust (DR) covariate shift adaptation,

complementing the prior asymptotic analysis [36] and clarifying the role of pilot estimates, sample allocation,

and parametric modeling for the Bayes regression function. The structure-agnostic upper bound (4.4) of the

DR estimator (3.3) shows that the leading bias term scales as the product of statistical error rates for the

pilot estimates, providing a non-asymptotic demonstration of the celebrated double robustness phenomenon

[59, 58]: one consistent pilot estimate suffices to obtain the consistency of the one-step corrected estimators,

and the joint improvement leads us to multiplicative gains. The decomposition of the DR empirical risk (3.2)

underscores how the labeled source samples primarily benefit the pilot regression model, while the unlabeled

target covariates strengthen the effect of the pilot estimate for the covariate density ratio, offering practical

guidance on data collection under budget constraints in the target domain. Within well-specified parametric

models, our analysis of the DR estimator (5.3) via modern techniques for finite-sample analysis of MLE yields

a non-asymptotic fast 1/n-type convergence guarantee, which is independent of the statistical accuracies of

pilot black-box estimates. In this result, the difficulty of learning a predictive model under covariate shift is

quantified by the Fisher information mismatch term between the source and target distributions. Together,

the findings in this paper demonstrate that the DR covariate shift adaptation combines asymptotic efficiency

results with strong finite-sample out-of-distribution generalization bounds.
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A Preliminary facts

In this section, let us collect a couple of useful preliminary facts that facilitates our analysis. The following

contraction lemma is a modification of Theorem 4.12 of [45] that has been established in [16]. See Theorem

7 therein for the proof of Lemma A.1.

Lemma A.1 (The Ledoux-Talagrand contraction principle). Let f : R+ → R+ be any non-decreasing convex

function, and ϕi : R → R, i ∈ [n], are L-Lipschitz continuous functions such that ϕi(0) = 0. Then, it holds

for any T ⊆ Rn that

Eσ1:n∼Unif({±1}n)

[
f

{
1

2
sup

t1:n∈T

∣∣∣∣∣
n∑

i=1

σiϕi (ti)

∣∣∣∣∣
}]

≤ Eσ1:n∼Unif({±1}n)

[
f

(
L · sup

t1:n∈T

∣∣∣∣∣
n∑

i=1

σiti

∣∣∣∣∣
)]

.

In particular, if we let f(t) = t for t ∈ R+, then we obtain

Eσ1:n∼Unif({±1}n)

[
sup

t1:n∈T

∣∣∣∣∣ 1n
n∑

i=1

σiϕi (ti)

∣∣∣∣∣
]
≤ 2LEσ1:n∼Unif({±1}n)

[
sup

t1:n∈T

∣∣∣∣∣ 1n
n∑

i=1

σiti

∣∣∣∣∣
]
. (A.1)

The following is a well-known standard deviation inequality for controlling the maxima of empirical processes;

see Theorem 1.1 in [40].

Lemma A.2 (Classical Talagrand’s concentration inequality). Let F ⊆ (X → [−B,B]) be any function class

and X1:n = (X1, X2, · · · , Xn) ∼ P⊗n for some P ∈ ∆(X). We define

Z := sup

{(
P̂− P

)
(f) :=

1

n

n∑
i=1

f (Xi)− EX∼P [f(X)] : f ∈ F

}
,

and v2 := sup {VarX∼P [f(X)] : f ∈ F}, where P̂ := 1
n

∑n
i=1 δXi

∈ ∆(X) stands for the empirical measure for

the n samples X1:n ∼ P⊗n. Then, it holds for every x ∈ R+ that

P {Z > E[Z] + x} ≤ exp

(
− nx2

4BE[Z] + 2v2 + 3Bx

)
. (A.2)

In particular, for any given δ ∈ (0, 1), it holds with probability at least 1− δ that

Z − E[Z] ≤
3B log

(
1
δ

)
n

+ 2

√
BE[Z] log

(
1
δ

)
n

+

√
2v2 log

(
1
δ

)
n

(A.3)

under the probability measure P⊗n.

Another key technical result is the following generic version of the Bernstein inequality for random vectors,

which plays a crucial role in establishing concentration properties for the gradient of the DR empirical risk

(5.2) with respect to the parameter vector θ. Check Lemma D.1 in Section D.1 for further details.

Lemma A.3. Suppose P ∈ ∆
(
Rd
)
satisfies EX∼P [X] = 0d and V := EX∼P

[
∥X∥22

]
< +∞. Define

B(α) := inf

{
t ∈ (0,+∞) : EX∼P

[
exp

{(
∥X∥2
t

)α}]
≤ 2

}
, α ∈ [1,+∞) , (A.4)

and assume that B(α) < +∞ for some constant α ∈ [1,+∞). Then, there exists an absolute constant C > 0

such that for any given δ ∈ (0, 1), we have∥∥∥∥∥ 1n
n∑

i=1

Xi

∥∥∥∥∥
2

≤ C

√V log
(
d
δ

)
n

+ B(α) log
1
α

{
B(α)√

V

} V log
(
d
δ

)
n

 (A.5)

under (X1,X2, · · · ,Xn) ∼ P⊗n, with probability at least 1− δ.
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We refer to Proposition 2 in [42] for the proof of Lemma A.3.

Lastly, the following lemma gives a standard upper bound on the Rademacher complexity of finite hy-

pothesis classes.

Lemma A.4. Let F ⊆ (X → [−B,B]) be a finite function class, i.e., |F| < +∞. Then, it holds that

Rµ
n(F) ≤ 2B

√
log (2|F|)

n
, (A.6)

for any probability measure µ ∈ ∆(X).

B Proofs for Section 3

B.1 Proof of Proposition 4.1

We first observe for any model parameter θ = (W1, · · · ,Wd) ∈ Θ(MF) that

−NNd (x;θ) = −NNd (x; (W1, · · · ,Wd)) = NNd (x; (W1, · · · ,−Wd)) , ∀x ∈ X,

together with (W1, · · · ,−Wd) ∈ Θ(MF). This observation implies that

Hd (X;MF) = −Hd (X;MF) = {−NNd (·;θ) ∈ (X → R) : θ ∈ Θ(MF)} . (B.1)

With the observation (B.1) in hand, one can realize from Theorem 1 in [22] that

Rµ
n (Hd (X;MF))

= E(X1:n,σ1:n)∼µ⊗n⊗Unif({±1}n)

[
sup

{∣∣∣∣∣ 1n
n∑

i=1

σiNNd (Xi;θ)

∣∣∣∣∣ : θ ∈ Θ(MF)

}]

≤
R
(
1 +

√
(2 log 2) d

)∏d
j=1 MF(j)

√
n

.

(B.2)

On the other hand, by virtue of the Ledoux-Talagrand contraction principle (Lemma A.1), we obtain that

Rµ
n(F)

= EX1:n∼µ⊗n

[
R̂n(F) (X1:n)

]
= EX1:n∼µ⊗n

[
Eσ1:n∼Unif({±1}n)

[
sup

{∣∣∣∣∣ 1n
n∑

i=1

η {NNd (Xi;θ)}

∣∣∣∣∣ : θ ∈ Θ(MF)

}]]

≤ 2L · EX1:n∼µ⊗n

[
Eσ1:n∼Unif({±1}n)

[
sup

{∣∣∣∣∣ 1n
n∑

i=1

NNd (Xi;θ)

∣∣∣∣∣ : θ ∈ Θ(MF)

}]]
= 2L · EX1:n∼µ⊗n

[
R̂n (Hd (X;MF)) (X1:n)

]
= 2L · Rµ

n (Hd (X;MF))

(a)

≤
2LR

(
1 +

√
(2 log 2) d

)∏d
j=1 MF(j)

√
n

,

(B.3)
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where the step (a) follows from the upper bound (B.2) on the Rademacher complexity of Hd (X;MF). Hence,

one can reveal that

Rµ
n (F∗)

(b)

≤ Rµ
n(F) +Rµ

n ({f∗})

(c)

≤
2LR

(
1 +

√
(2 log 2) d

)∏d
j=1 MF(j)

√
n

+
2
√
log 2√
n

,

which thus completes the proof of Proposition 4.1, where the step (b) follows by the triangle inequality and

the step (c) invokes the bound (B.3) and the standard upper bound on the Rademacher complexity of finite

hypothesis classes (see Lemma A.4 for details).

B.2 Proof of Theorem 4.1

We first provide a formal definition of the doubly-robust (DR) empirical risk R̂DR : OnP × XnQ → (F → R),
where

R̂DR

(
o1:nP ,x1:nQ

)
(f) :=

1

nP

nP∑
i=1

ρ̂
(
xP
i

) [{
yPi − f

(
xP
i

)}2 − {f̂0 (xP
i

)
− f

(
xP
i

)}2
]

+
1

nQ

nQ∑
j=1

{
f̂0

(
XQ

j

)
− f

(
XQ

j

)}2

,

(B.4)

and define the DR population risk R : F → R by

R(f) := E(
OP

1:nP
,XQ

1:nQ

)
∼P⊗nP⊗Q

⊗nQ
X

[
R̂DR

(
OP

1:nP
,XQ

1:nQ

)
(f)
]
, f ∈ F . (B.5)

Let us note here that R̂DR = R̂DR

(
OP

1:nP
,XQ

1:nQ

)
: F → R under

(
OP

1:nP
,XQ

1:nQ

)
∼ P⊗nP ⊗Q⊗nQ

X . Then, one

can decompose the DR population risk R : F → R as follows:

R(f)

= E(X,Y )∼P

[
ρ̂(X) {Y − f(X)}2

]
− EX∼PX

[
ρ̂(X)

{
f̂0(X)− f(X)

}2
]

+ EX∼QX

[{
f̂0(X)− f(X)

}2
]

= E(X,Y )∼P

[
ρ∗(X) {Y − f(X)}2

]
+ E(X,Y )∼P

[
{ρ̂(X)− ρ∗(X)}

[
{Y − f(X)}2 −

{
f̂0(X)− f(X)

}2
]]

(a)
= RQ(f) + E(X,Y )∼P

[
{ρ̂(X)− ρ∗(X)}

[
{Y − f(X)}2 −

{
f̂0(X)− f(X)

}2
]]

,

(B.6)

where the step (a) follows due to the observation (3.1). The definition of the DR estimator (3.3) yields the

following basic inequality : 0 ≤ R̂DR(f)− R̂DR

(
f̂DR

)
for every f ∈ F . Thus, we have

0
(b)

≤ R̂DR (f
∗)− R̂DR

(
f̂DR

)
=
{
R̂DR (f

∗)−R (f∗)
}
+
{
R (f∗)−RQ (f∗)

}
−
{
RQ

(
f̂DR

)
−RQ (f∗)

}
︸ ︷︷ ︸

= EQ(f̂DR)

−
{
R
(
f̂DR

)
−RQ

(
f̂DR

)}
−
{
R̂DR

(
f̂DR

)
−R

(
f̂DR

)}
,

(B.7)
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where the step (b) holds by the well-specification assumption of the model f∗ ∈ F . It follows that

EQ
(
f̂DR

)
= RQ

(
f̂DR

)
−RQ (f∗)

≤
{
R (f∗)−RQ (f∗)

}
−
{
R
(
f̂DR

)
−RQ

(
f̂DR

)}
︸ ︷︷ ︸

=: (T1)

+
{
R̂DR (f

∗)− R̂DR

(
f̂DR

)}
−
{
R (f∗)−R

(
f̂DR

)}
︸ ︷︷ ︸

=: (T2)

.

(B.8)

Bounding the term (T1): With the decomposition (B.8) in hand, let us first take a closer inspection on

the first term (T1).

(T1)
(c)
= E(X,Y )∼P

[
{ρ̂(X)− ρ∗(X)}

[
{Y − f∗(X)}2 −

{
f̂0(X)− f∗(X)

}2

−
{
Y − f̂DR(X)

}2

+
{
f̂0(X)− f̂DR(X)

}2
]]

= 2E(X,Y )∼P

[
{ρ̂(X)− ρ∗(X)}

{
Y − f̂0(X)

}{
f̂DR(X)− f∗(X)

}]
= 2EX∼PX

[
{ρ̂(X)− ρ∗(X)}

{
f∗(X)− f̂0(X)

}{
f̂DR(X)− f∗(X)

}]
,

where the step (c) uses the decomposition (B.6) of the DR population risk R : F → R. Therefore, we have

(T1) ≤ 2
∣∣∣EX∼PX

[
{ρ̂(X)− ρ∗(X)}

{
f∗(X)− f̂0(X)

}{
f̂DR(X)− f∗(X)

}]∣∣∣
≤ 2EX∼PX

[
|ρ̂(X)− ρ∗(X)| ·

∣∣∣f∗(X)− f̂0(X)
∣∣∣ · ∣∣∣f̂DR(X)− f∗(X)

∣∣∣]
(d)

≤ 4
{
EX∼PX

[
{ρ̂(X)− ρ∗(X)}2

]} 1
2

{
EX∼PX

[{
f̂0(X)− f∗(X)

}2
]} 1

2

= 4 ∥ρ̂− ρ∗∥L2(X,PX) ·
∥∥∥f̂0 − f∗

∥∥∥
L2(X,PX)

,

(B.9)

where the step (d) holds due to the Cauchy-Schwarz inequality together with the fact that
∣∣∣f̂DR(x)− f∗(x)

∣∣∣ ≤∥∥∥f̂DR

∥∥∥
∞

+ ∥f∗∥∞ ≤ 2, follows from Assumption 3.

Bounding the term (T2): With regards to the term (T2), we utilize tools from the empirical processes

theory in order to establish its upper bound. First, we observe for any f ∈ F that

R̂DR (f
∗)− R̂DR(f)

=
2

nP

nP∑
i=1

ρ̂
(
XP

i

) {
f
(
XP

i

)
− f∗ (XP

i

)}{
Y P
i − f̂0

(
XP

i

)}
+

2

nQ

nQ∑
j=1

{
f
(
XQ

j

)
− f∗

(
XQ

i

)}{
f̂0

(
XQ

j

)
− f∗

(
XQ

i

)}

− 1

nQ

nQ∑
j=1

{
f
(
XQ

j

)
− f∗

(
XQ

i

)}2

.

(B.10)
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With this observation in hand, it is seen that

(T2) ≤ sup
{∣∣∣{R̂DR (f

∗)− R̂DR(f)
}
−
{
R (f∗)−R(f)

}∣∣∣ : f ∈ F
}

(e)

≤ 2 sup
{∣∣GP

nP
(φ)

(
OP

1:nP

)∣∣ : φ ∈ F∗}+ 2 sup
{∣∣∣GQ,(1)

nQ
(φ)

(
XQ

1:nQ

)∣∣∣ : φ ∈ F∗
}

+ sup
{∣∣∣GQ,(2)

nQ
(φ)

(
XQ

1:nQ

)∣∣∣ : φ ∈ F∗
}

= 2 sup
{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}
+ 2 sup

{
GQ,(1)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
+ sup

{
GQ,(2)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
,

(B.11)

where the step (e) follows by virtue of the triangle inequality. Here, −F∗ := {−φ : φ ∈ F∗}, and the functions

GP
nP

: (X → R) → (OnP → R) and
{
GQ,(l)

nQ : (X → R) → (XnQ → R) : l ∈ [2]
}

are defined as

GP
nP
(φ)

(
oP
1:nP

)
:=

1

nP

nP∑
i=1

ρ̂ (xnP
i )φ (xnP

i )
{
yPi − f̂0 (x

nP
i )
}
− E(X,Y )∼P

[
ρ̂(X)φ(X)

{
Y − f̂0(X)

}]
,

GQ,(1)
nQ

(φ)
(
xQ
1:nQ

)
:=

1

nQ

nQ∑
j=1

φ
(
xQ
j

){
f̂0

(
xQ
j

)
− f∗

(
xQ
j

)}
− EX∼QX

[
φ(X)

{
f̂0(X)− f∗(X)

}]
,

GQ,(2)
nQ

(φ)
(
xQ
1:nQ

)
:=

1

nQ

nQ∑
j=1

{
φ
(
xQ
j

)}2

− EX∼QX

[
{φ(X)}2

]
.

(B.12)

If OP
1:nP

∼ P⊗nP and XQ
1:nQ

∼ Q⊗nQ
X , then

•
{
GP

nP
(φ)

(
OP

1:nP

)
=
(
P̂− P

) [
ρ̂(X)φ(X)

{
Y − f̂0(X)

}]
: φ ∈ F∗ ∪ (−F∗)

}
,

•
{
GQ,(1)

nQ (f)
(
XQ

1:nQ

)
=
{
Q̂X −QX

}[
φ(X)

{
f̂0(X)− f∗(X)

}]
: φ ∈ F∗ ∪ (−F∗)

}
,

•
{
GQ,(2)

nQ (f)
(
XQ

1:nQ

)
=
{
Q̂X −QX

}[
{φ(X)}2

]
: φ ∈ F∗ ∪ (−F∗)

}
are empirical processes indexed by φ ∈ F∗ ∪ (−F∗), where P̂ ∈ ∆(X× R) and Q̂X ∈ ∆(X) are the empirical

distributions for the nP labeled source samples OP
1:nP

and nQ unlabeled target samples XQ
1:nQ

, respectively,

i.e., P̂ := 1
nP

∑nP
i=1 δ(XP

i ,Y
P
i )

and Q̂X := 1
nQ

∑nQ
j=1 δXQ

j
.

Control of the supremum of
{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}
: Firstly, we are in need of a delicate

control of the expectation of the supremum of the empirical process{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}
.

This goal can be achieved through the following lemma, whose proof is provided in Appendix C.1.

Lemma B.1. The expectation of the supremum of the empirical process
{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}
is upper bounded by

EOP
1:nP

∼P⊗nP

[
sup

{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}]
≤ 4Cdr (1 + Crf)RPX

nP
(F∗) . (B.13)

We then move on to a tight control of the size of{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}
− EOP

1:nP
∼P⊗nP

[{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}]
under OP

1:nP
∼ P⊗nP . This task can be settled via the following lemma, whose proof is deferred to Appendix

C.2.
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Lemma B.2. If OP
1:nP

∼ P⊗nP , then with probability at least 1− δ, we have

sup
{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}
− EOP

1:nP
∼P⊗nP

[
sup

{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}]
≤ 6Cdr (1 + Crf)

nP
log

(
1

δ

)
+ 2Cdr (1 + Crf)

√
2 log

(
1
δ

)
nP

+ 4Cdr (1 + Crf)

√
2RPX

nP (F∗) log
(
1
δ

)
nP

.

(B.14)

To finish up, we first denote the right-hand side of the inequality (B.14) from Lemma B.2 by

BP(δ) :=
6Cdr (1 + Crf)

nP
log

(
1

δ

)
+ 2Cdr (1 + Crf)

√
2 log

(
1
δ

)
nP

+ 4Cdr (1 + Crf)

√
2RPX

nP (F∗) log
(
1
δ

)
nP

.

(B.15)

for ease of exposition. Then, with probability at least 1− δ, one has

sup
{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}
= sup

{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}
− EOP

1:nP
∼P⊗nP

[
sup

{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}]
+ EOP

1:nP
∼P⊗nP

[
sup

{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}]
(f)

≤ BP(δ) + 4Cdr (1 + Crf)RPX
nP

(F∗) ,

(B.16)

where the step (f) invokes Lemmas B.1 and B.2. For simplicity, we define the following event: for δ ∈ (0, 1),

EP(δ) :=
{(

oP
1:nP

,xQ
1:nQ

)
∈ OnP × XnQ :

sup
{
GP

nP
(φ)

(
oP
1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}
≤ BP(δ) + 4Cdr (1 + Crf)RPX

nP
(F∗)

}
.

(B.17)

Then, the upper bound (B.16) implies(
P⊗nP ⊗Q⊗nQ

X

)
{EP(δ)} ≥ 1− δ for every δ ∈ (0, 1). (B.18)

Control of the supremum of
{
GQ,(1)

nQ (φ)
(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
: Similar to the preceding argument

for controlling the supremum of the empirical process
{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}
, we first establish

an upper bound on the expectation of the supremum of the empirical process{
GQ,(1)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
.

We provide a desired result in the following lemma, whose proof is postponed to Appendix C.3.

Lemma B.3. The expectation of the supremum of the empirical process
{
GQ,(1)

nQ (φ)
(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
can be upper bounded by

E
XQ

1:nQ
∼Q

⊗nQ
X

[
sup

{
GQ,(1)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
≤ 4 (1 + Crf)RQX

nQ
(F∗) . (B.19)

Analogously, we now aim at a tight control of the size of

sup
{
GQ,(1)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
− E

XQ
1:nQ

∼Q
⊗nQ
X

[
sup

{
GQ,(1)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
under the data generating process XQ

1:nQ
∼ Q⊗nQ

X . This goal can be achieved through the following lemma,

whose detailed proof is provided in Appendix C.4.
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Lemma B.4. If XQ
1:nQ

∼ Q⊗nQ
X , then with probability at least 1− δ, it holds that

sup
{
GQ,(1)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
− E

XQ
1:nQ

∼Q
⊗nQ
X

[
sup

{
GQ,(1)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
≤ 6 (1 + Crf)

nQ
log

(
1

δ

)
+ 2 (1 + Crf)

√
2 log

(
1
δ

)
nQ

+ 4 (1 + Crf)

√
2RQX

nQ (F∗) log
(
1
δ

)
nQ

.

(B.20)

For simplicity, we denote the right-hand side of the inequality (B.20) from Lemma B.4 for any given δ ∈ (0, 1)

as

B(1)
Q (δ) :=

6 (1 + Crf)

nQ
log

(
1

δ

)
+ 2 (1 + Crf)

√
2 log

(
1
δ

)
nQ

+ 4 (1 + Crf)

√
2RQX

nQ (F∗) log
(
1
δ

)
nQ

. (B.21)

Then, it holds with probability greater than 1− δ that

sup
{
GQ,(1)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
= sup

{
GQ,(1)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
− E

XQ
1:nQ

∼Q
⊗nQ
X

[
sup

{
GQ,(1)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
+ E

XQ
1:nQ

∼Q
⊗nQ
X

[
sup

{
GQ,(1)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
(g)

≤ B(1)
Q (δ) + 4 (1 + Crf)RQX

nQ
(F∗) ,

(B.22)

where the step (g) holds due to Lemma B.3 and B.4. For brevity, let us define the following event: for any

given δ ∈ (0, 1),

E(1)
Q (δ) :=

{(
oP
1:nP

,xQ
1:nQ

)
∈ OnP × XnQ :

sup
{
GQ,(1)

nQ
(φ)

(
xQ
1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
≤ B(1)

Q (δ) + 4 (1 + Crf)RQX
nQ

(F∗)
}
.

(B.23)

Then, the upper bound (B.22) directly yields(
P⊗nP ⊗Q⊗nQ

X

){
E(1)
Q (δ)

}
≥ 1− δ for every δ ∈ (0, 1). (B.24)

Control of the supremum of
{
GQ,(2)

nQ (φ)
(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
: Akin to the above delicate control

of the supremum of empirical processes, we bound the expectation of the supremum of the empirical process{
GQ,(2)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
.

It can be developed via the following lemma, with the detailed proof postponed to Appendix C.5.

Lemma B.5. The expectation of the supremum of the empirical process
{
GQ,(2)

nQ (φ)
(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
has an upper bound

E
XQ

1:nQ
∼Q

⊗nQ
X

[
sup

{
GQ,(2)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
≤ 16 · RQX

nQ
(F∗) . (B.25)

As the next step, we now turn to a tight control of the size of

sup
{
GQ,(2)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
− E

XQ
1:nQ

∼Q
⊗nQ
X

[
sup

{
GQ,(2)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
with XQ

1:nQ
∼ Q⊗nQ

X . The following lemma takes a step forward towards this goal, whose proof is deferred to

Appendix C.6.
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Lemma B.6. If XQ
1:nQ

∼ Q⊗nQ
X , then with probability at least 1− δ, it holds that

sup
{
GQ,(2)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
− E

XQ
1:nQ

∼Q
⊗nQ
X

[
sup

{
GQ,(2)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
≤ 12

nQ
log

(
1

δ

)
+ 4

√
2 log

(
1
δ

)
nQ

+ 16

√
RQX

nQ (F∗) log
(
1
δ

)
nQ

.

(B.26)

For ease of expression, we denote the right-hand side of the bound (B.26) in Lemma B.6 by

B(2)
Q (δ) :=

12

nQ
log

(
1

δ

)
+ 4

√
2 log

(
1
δ

)
nQ

+ 16

√
RQX

nQ (F∗) log
(
1
δ

)
nQ

. (B.27)

Then, one has with probability at least 1− δ that

sup
{
GQ,(2)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
= sup

{
GQ,(2)

nQ
(φ)

(
XQ

1:nQ

)
: φ(·) ∈ F∗ ∪ (−F∗)

}
− E

XQ
1:nQ

∼Q
⊗nQ
X

[
sup

{
GQ,(2)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
+ E

XQ
1:nQ

∼Q
⊗nQ
X

[
sup

{
GQ,(2)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
(h)

≤ B(2)
Q (δ) + 16 · RQX

nQ
(F∗) ,

(B.28)

where the step (h) invokes Lemmas B.5 and B.6. For the sake of simplicity, let us define the following event:

for any δ ∈ (0, 1),

E(2)
Q (δ) :=

{(
oP
1:nP

,xQ
1:nQ

)
∈ OnP × XnQ :

sup
{
GQ,(2)

nQ
(φ)

(
xQ
1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
≤ B(2)

Q (δ) + 16 · RQX
nQ

(F∗)
}
.

(B.29)

Then, the upper bound (B.29) gives(
P⊗nP ⊗Q⊗nQ

X

){
E(2)
Q (δ)

}
≥ 1− δ for every δ ∈ (0, 1). (B.30)

Finally, it is time to put all pieces together in order to bound the term (T2) from our main bound (B.8).

To this end, we introduce the event E(δ) := EP
(
δ
3

)
∩ E(1)

Q
(
δ
3

)
∩ E(2)

Q
(
δ
3

)
for every δ ∈ (0, 1). By virtue of the

union bound, the inequalities (B.18), (B.24), and (B.30) implies(
P⊗nP ⊗Q⊗nQ

X

)
{E(δ)} = 1−

(
P⊗nP ⊗Q⊗nQ

X

)
{(OnP × XnQ) \ E(δ)} ≥ 1− δ.

On the other hand, by utilizing the definitions (B.17), (B.23), and (B.29) of the events EP(δ), E(1)
Q (δ), and

E(2)
Q (δ), respectively, it follows on the event E(δ) that

(T2)
(i)

≤ 2 sup
{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}
+ 2 sup

{
GQ,(1)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
+ sup

{
GQ,(2)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
≤ 2BP

(
δ

3

)
+ 2B(1)

Q

(
δ

3

)
+ B(2)

Q

(
δ

3

)
+ 8Cdr (1 + Crf)RPX

nP
(F∗) + 8 (3 + Crf)RQX

nQ
(F∗) ,

(B.31)
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where the step (i) holds by virtue of the inequality (B.11). Taking two bounds (B.9) and (B.31) collectively

leads to the following upper bound on the excess Q-risk of the DR estimator (3.3): on the event E(δ), which
holds with probability at least 1− δ under the probability measure P⊗nP ⊗Q⊗nQ

X , we obtain

EQ
(
f̂DR

)
≤ (T1) + (T2)

≤ 4 ∥ρ̂− ρ∗∥L2(X,PX) ·
∥∥∥f̂0 − f∗

∥∥∥
L2(X,PX)

+ 2BP

(
δ

3

)
+ 2B(1)

Q

(
δ

3

)
+ B(2)

Q

(
δ

3

)
+ 8Cdr (1 + Crf)RPX

nP
(F∗) + 8 (3 + Crf)RQX

nQ
(F∗)

≤ 4 ∥ρ̂− ρ∗∥L2(X,PX) ·
∥∥∥f̂0 − f∗

∥∥∥
L2(X,PX)

+ 12 (2 + Crf) log

(
3

δ

)(
Cdr

nP
+

1

nQ

)
+ 4 (1 + Cdr) (2 + Crf)

√
2 log

(
3

δ

)(
1

√
nP

+
1

√
nQ

)

+ 8 (1 + Cdr) (2 + Crf)

√
log

(
3

δ

)(RPX
nP

(F∗)
√
nP

+
RQX

nQ
(F∗)

√
nQ

)
+ 8Cdr (1 + Crf)RPX

nP
(F∗) + 8 (3 + Crf)RQX

nQ
(F∗) ,

and this completes the proof of Theorem 4.1.

B.3 Proof of Theorem 5.1

To begin with, we introduce some key universal constants to formally present our improved structure-agnostic

guarantee of the DR estimator (5.3) for parameterized hypothesis classes F ⊆ (X → [−1, 1]):

B1 := 4 (1 + Cdr) (1 + Crf) b1,

B2 := 8
√
2 ·max

{
Cdr (1 + Crf) b2, b

2
1 + (1 + Crf)

2
b2

}
,

B3 := max {2 (1 + Cdr) (1 + Crf) , 4} · b3 + 6b1b2.

(B.32)

With the above conventions, the detailed version of Theorem 5.1 can be stated as follows:

Theorem B.1 (Structure-agnostic upper bound II for the DR estimator). With the parameterized function

class (5.1) and Assumptions 1–6, the DR estimator (5.3) satisfies the following property: there is an absolute

constant K ∈ (0,+∞) such that, with probability at least 1− 8δ under the probability measure P⊗nP ⊗Q⊗nQ
X ,

EQ
(
θ̂DR

)
= EX∼QX

[{
f
(
X; θ̂DR

)
− f∗(X)

}2
]

≤ 18K2 (1 + Cdr)
2
(1 + Crf)

2
log

(
d

δ

)[
Trace

{
IP (θ∗) I−1

Q (θ∗)
}

nP
+

d

nQ

]
,

(B.33)

provided that min {nP, nQ} ≥ κ · N ∗ log
(
d
δ

)
, where N ∗ := max {N1,N2} and

κ := max
{
κ, {2B3K (1 + Cdr) (1 + Crf)}2 , 18 {K (1 + Cdr) (1 + Crf)}2

}
,

κ := max

(260B2)
2
,

{
860B3

3
K (1 + Cdr) (1 + Crf)

}2

,

{
160B2

1B2

(1 + Cdr)
2
(1 + Crf)

2

} 2
3

,

{
640B3

1B3

3 (1 + Cdr)
2
(1 + Crf)

2

} 1
2

,
80B2

1

(1 + Cdr)
2
(1 + Crf)

2

 ,
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N1 :=
∥∥I−1

Q (θ∗)
∥∥2
op

·max
{
1,Trace

{
IP (θ∗) I−2

Q (θ∗) + I−1
Q (θ∗)

}
,[

min
{
Trace

{
IP (θ∗) I−2

Q (θ∗)
}
,Trace

{
I−1
Q (θ∗)

}}]− 2
3 , (B.34)[

min
{
Trace

{
IP (θ∗) I−2

Q (θ∗)
}
,Trace

{
I−1
Q (θ∗)

}}]− 1
2

}
,

N2 := max


[
Trace

{
IP (θ∗) I−2

Q (θ∗) + I−1
Q (θ∗)

}
min

{
Trace

{
IP (θ∗) I−1

Q (θ∗)
}
, d
} ]2 , [Trace{IP (θ∗) I−2

Q (θ∗) + I−1
Q (θ∗)

}]3[
min

{
Trace

{
IP (θ∗) I−1

Q (θ∗)
}
, d
}]2 ,

 ∥∥I−1
Q (θ∗)

∥∥2
op

min
{
Trace

{
IP (θ∗) I−1

Q (θ∗)
}
, d
}


2
3

,

 ∥∥I−1
Q (θ∗)

∥∥3
op

min
{
Trace

{
IP (θ∗) I−1

Q (θ∗)
}
, d
}


1
2

,

∥∥I−1
Q (θ∗)

∥∥
op

min
{
Trace

{
IP (θ∗) I−1

Q (θ∗)
}
, d
}} .

Towards proving Theorem B.1, we first present a key technical lemma that plays a critical role in the proof.

Roughly speaking, the following lemma aims to capture the distance between the DR estimate θ̂DR ∈ Θ and

the ground-truth parameter θ∗ ∈ Θ under different metrics.

Lemma B.7. With Assumptions 1–6, given any δ ∈
(
0, 1

8

]
and (nP, nQ) ∈ N× N such that min {nP, nQ} ≥

κ·max {N1,N2} log
(
d
δ

)
, where κ, N1, and N2 are specified as (B.34), the following facts hold with probability

at least 1− 8δ under P⊗nP ⊗Q⊗nQ
X : for some universal constant K ∈ (0,+∞),

(i) we have θ̂DR ∈ Br(δ) (θ
∗), where the radius r(δ) ∈ (0,+∞) is given by

r(δ) := 3K (1 + Cdr) (1 + Crf)

√
log

(
d

δ

)
√Trace

{
IP (θ∗) I−2

Q (θ∗)
}

nP
+

√
Trace

{
I−1
Q (θ∗)

}
nQ

 .

(B.35)

(ii) it holds that∥∥∥I 1
2

Q (θ∗)
(
θ̂DR − θ∗

)∥∥∥2
2

≤ 9K2 (1 + Cdr)
2
(1 + Crf)

2
log

(
d

δ

)√Trace
{
IP (θ∗) I−1

Q (θ∗)
}

nP
+

√
d

nQ

2

.

(B.36)

For simplicity, let Λ(δ) ⊆ OnP ×XnQ denote the event for which Lemma B.7 holds, which immediately implies(
P⊗nP ⊗Q⊗nQ

X

)
{Λ(δ)} ≥ 1− 8δ for any given δ ∈

(
0, 1

8

]
.
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We embark on the proof of Theorem B.1 by doing a Taylor expansion with respect to as follows:

EQ
(
θ̂DR

)
= E(X,Y )∼Q

[
ℓ
(
Y, f

(
X; θ̂DR

))
− ℓ (Y, f (X;θ∗))

]
=
{
E(X,Y )∼Q [∇θℓ (Y, f (X;θ∗))]

}⊤ (
θ̂DR − θ∗

)
+

1

2!

(
θ̂DR − θ∗

)⊤
E(X,Y )∼Q

[
∇2

θℓ (Y, f (X;θ∗))
] (

θ̂DR − θ∗
)

+
1

3!

〈
E(X,Y )∼Q

[
∇3

θℓ
(
Y, f

(
X; θ̃

))]
,
(
θ̂DR − θ∗

)⊗3
〉

F

(a)
=

1

2!

(
θ̂DR − θ∗

)⊤
IQ (θ∗)

(
θ̂DR − θ∗

)
+

1

3!

〈
E(X,Y )∼Q

[
∇3

θℓ
(
Y, f

(
X; θ̃

))]
,
(
θ̂DR − θ∗

)⊗3
〉

F

(B.37)

for some θ̃ ∈
{
(1− λ)θ∗ + λθ̂DR : λ ∈ [0, 1]

}
, where the step (a) holds due to the following facts:

∇θℓ (y, f (x;θ)) = 2 {f (x;θ)− y}∇θf (x;θ) ,

∇2
θℓ (y, f (x;θ)) = 2∇θf (x;θ) {∇θf (x;θ)}⊤ + 2 {f (x;θ)− y}∇2

θf (x;θ) ,

∇3
θℓ (y, f (x;θ)) = 2∇2

θf (x;θ)⊗∇θf (x;θ) + 4∇θf (x;θ)⊗∇2
θf (x;θ)

+ 2 {f (x;θ)− y}∇3
θf (x;θ)

(B.38)

Thus, it follows from the equation (B.37) that
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(
θ̂DR

)
≤ 1

2

(
θ̂DR − θ∗

)⊤
IQ (θ∗)

(
θ̂DR − θ∗

)
+

1

6

∥∥∥E(X,Y )∼Q
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θℓ
(
Y, f

(
X; θ̃

))]∥∥∥
op

∥∥∥θ̂DR − θ∗
∥∥∥3
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(b)

≤ 1

2

(
θ̂DR − θ∗
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IQ (θ∗)

(
θ̂DR − θ∗

)
+

B3

6

∥∥∥θ̂DR − θ∗
∥∥∥3
2
,

(B.39)

where the step (b) holds by the observation that the operator norm ∥·∥op :
(
Rd
)⊗3 → R+ is a convex function

together with Jensen’s inequality and the following bound: for any θ ∈ Θ,∥∥∇3
θℓ (Y, f (X;θ))

∥∥
op

≤ 2 (1 + |Y |)
∥∥∇3

θf (X;θ)
∥∥
op

+ 6 ∥∇θf (X;θ)∥2
∥∥∇2

θf (X;θ)
∥∥
op

(c)

≤ 4b3 + 6b1b2 ≤ B3

Q-almost surely, where the step (c) follows from Assumption 3 and the part (ii) of Assumption 5. Therefore,

while being conditioned on the event Λ(δ), we reach
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·
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√
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{
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}
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3

.

(B.40)
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At this point, one can observe that if min {nP, nQ} ≥ κ ·max {N1,N2} log
(
d
δ

)
, then

3
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3 (1 + Cdr)
3
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√
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.

(B.41)

Hence, by taking two pieces (B.40) and (B.41) collectively, it holds that if min {nP, nQ} ≥ κ·max {N1,N2} log
(
d
δ

)
,

then we have on the event Λ(δ) that

EQ
(
θ̂DR

)
≤ 9K2 (1 + Cdr)

2
(1 + Crf)

2
log

(
d
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)√Trace
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(d)

≤ 18K2 (1 + Cdr)
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2
log

(
d

δ

)[
Trace
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Q (θ∗)
}
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+

d

nQ

]
,

(B.42)

where the step (d) invokes the Cauchy-Schwarz inequality. Since
(
P⊗nP ⊗Q⊗nQ

X

)
{Λ(δ)} ≥ 1−8δ, the upper

bound (B.42) on the excess Q-risk of the DR estimator (5.3) holds with probability higher than 1−8δ under

the probability measure P⊗nP ⊗Q⊗nQ
X , which completes the proof of Theorem B.1.

C Proof of auxiliary lemmas for the proof of Theorem 4.1

C.1 Proof of Lemma B.1

By following the standard symmetrization argument from empirical processes theory, we find that

EOP
1:nP

∼P⊗nP

[
sup

{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}]
= EOP

1:nP
∼P⊗nP

[
sup

{∣∣GP
nP
(φ)

(
OP

1:nP

)∣∣ : φ ∈ F∗}] (C.1)

≤ 2E(
OP

1:nP
,σ1:nP

)
∼P⊗nP⊗Unif({±1}nP )

[
sup

{∣∣∣∣∣ 1nP

nP∑
i=1

σiρ̂
(
XP

i

)
φ
(
XP

i

){
Y P
i − f̂0

(
XP

i

)}∣∣∣∣∣ : φ ∈ F∗

}]
.

To control the last term in the bound (C.1), we leverage the Ledoux-Talagrand contraction principle, which

is formally stated in Lemma A.1. To this end, define the functions ϕP
i : OnP → (R → R), i ∈ [nP], by

ϕP
i

(
oP
1:nP

)
(t) := ρ̂

(
xP
i

){
yPi − f̂0

(
xP
i

)}
(t), ∀t ∈ R, (C.2)

and let ϕP
i := ϕP

i

(
OP

1:nP

)
: R → R for OP

1:nP
∼ P⊗nP for simplicity. Let AP :=

⋂nP
i=1

{∣∣Y P
i

∣∣ ≤ 1
}
, which holds

P⊗nP-almost surely. Then, one can observe that the function ϕP
i : OnP → (R → R) is a Cdr (1 + Crf)-Lipschitz

continuous function such that ϕP
i (0) = 0 for every i ∈ [nP] on the event AP. Then, while being conditioned

on OP
1:nP

, we obtain by virtue of Lemma A.1 that

Eσ1:nP∼Unif({±1}nP )

[
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{∣∣∣∣∣ 1nP
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)
φ
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Y P
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]
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= Eσ1:nP∼Unif({±1}nP )

[
sup

{∣∣∣∣∣ 1nP

nP∑
i=1

σiρ̂
(
XP

i

)
φ
(
XP

i

){
Y P
i − f̂0

(
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i

)}∣∣∣∣∣ : φ ∈ F∗

}]
· 1AP

= Eσ1:nP∼Unif({±1}nP )

[
sup

{∣∣∣∣∣ 1nP

nP∑
i=1

σiϕ
P
i (ti)

∣∣∣∣∣ : t1:nP ∈ TP
(
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1:nP
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· 1AP (C.3)

≤ 2Cdr (1 + Crf)Eσ1:nP∼Unif({±1}nP )

[
sup

{∣∣∣∣∣ 1nP

nP∑
i=1

σiti

∣∣∣∣∣ : t1:nP ∈ TP
(
OP

1:nP

)}]
· 1AP ,

where TP : OnP → P (RnP) is defined as

TP
(
oP
1:nP

)
:=
{(

f
(
xP
i

)
− f∗ (xP

i

)
: i ∈ [nP]

)
: f ∈ F

}
⊆ RnP .

Here, P (RnP) denotes the power set of the nP-dimensional Euclidean space RnP . By taking the bound (C.3)

collectively into the inequality (C.1), we arrive at

EOP
1:nP

∼P⊗nP

[
sup

{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}]
≤ 2E(

OP
1:nP

,σ1:nP

)
∼P⊗nP⊗Unif({±1}nP )

[
sup

{∣∣∣∣∣ 1nP

nP∑
i=1

σiρ̂
(
XP

i

)
φ
(
XP

i

){
Y P
i − f̂0

(
XP

i

)}∣∣∣∣∣ : φ ∈ F∗

}
· 1AP

]

≤ 4Cdr (1 + Crf)EOP
1:nP

∼P⊗nP

[
Eσ1:nP∼Unif({±1}nP )

[
sup

{∣∣∣∣∣ 1nP

nP∑
i=1

σiti

∣∣∣∣∣ : t1:nP ∈ TP
(
OP

1:nP

)}]
· 1AP

]
= 4Cdr (1 + Crf)EOP

1:nP
∼P⊗nP

[
R̂nP (F∗)

(
XP

1:nP

)
· 1AP

]
= 4Cdr (1 + Crf)RPX

nP
(F∗) ,

as desired.

C.2 Proof of Lemma B.2

To begin with, we introduce the function class {θP(φ) : φ ∈ F∗ ∪ (−F∗)}, where θP(φ) : X× [−1, 1] → R is

defined to be

θP(φ)(x, y) := ρ̂(x)φ(x)
{
y − f̂0(x)

}
, ∀(x, y) ∈ X× [−1, 1] .

Recall that the event AP =
⋂nP

i=1

{∣∣Y P
i

∣∣ ≤ 1
}
holds P⊗nP-almost surely, i.e., (P⊗nP) (AP) = 1. We thus obtain

that

sup
{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}
= sup

{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}
· 1AP

= sup

{
1

nP

nP∑
i=1

θP(φ)
(
OP

i

)
− EO∼P [θP(φ)(O)] : φ ∈ F∗ ∪ (−F∗)

}
· 1AP

= sup

{
1

nP

nP∑
i=1

θP(φ)
(
OP

i

)
− EO∼P [θP(φ)(O)] : φ ∈ F∗ ∪ (−F∗)

} (C.4)

P⊗n-almost surely. In light of the equation (C.4), it can be easily seen based on the assumption (4.1) that

(i) |θP(φ)(x, y)| ≤ 2Cdr (1 + Crf) for every (x, y, φ) ∈ X× [−1, 1]× {F∗ ∪ (−F∗)}.

(ii) Var(X,Y )∼P [θP(φ)(X,Y )] ≤ E(X,Y )∼P

[
{θP(φ)(X,Y )}2

]
≤ 4C2

dr (1 + Crf)
2
for every φ ∈ F∗ ∪ (−F∗).
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By the classical Talagrand’s concentration inequality (Lemma A.2) with
(
B, v2

)
=
(
2Cdr (1 + Crf) , 4C

2
dr (1 + Crf)

2
)
,

it holds with probability at least 1− δ that

sup
{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}
− EOP

1:nP
∼P⊗nP

[
sup

{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}]
≤ 6Cdr (1 + Crf)

nP
log

(
1

δ

)
+ 2Cdr (1 + Crf)

√
2 log

(
1
δ

)
nP

(C.5)

+
2

√
nP

√
2Cdr (1 + Crf)EOP

1:nP
∼P⊗nP

[
sup

{
GP

nP
(φ)

(
OP

1:nP

)
: φ ∈ F∗ ∪ (−F∗)

}]
log

(
1

δ

)
(a)

≤ 6Cdr (1 + Crf)

nP
log

(
1

δ

)
+ 2Cdr (1 + Crf)

√
2 log

(
1
δ

)
nP

+ 4Cdr (1 + Crf)

√
2RPX

nP (F∗) log
(
1
δ

)
nP

,

where the step (a) invokes Lemma B.1. We thus complete the proof of Lemma B.2.

C.3 Proof of Lemma B.3

In light of the standard symmetrization argument from empirical processes theory, we reveal that

E
XQ

1:nQ
∼Q

⊗nQ
X

[
sup

{
GQ,(1)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
= E

XQ
1:nQ

∼Q
⊗nQ
X

[
sup

{∣∣∣GQ,(1)
nQ

(φ)
(
XQ

1:nQ

)∣∣∣ : φ ∈ F∗
}]

(C.6)

≤ 2E(
XQ

1:nQ
,σ1:nQ

)
∼Q

⊗nQ
X ⊗Unif({±1}nQ )

sup

∣∣∣∣∣∣ 1nQ

nQ∑
j=1

σjφ
(
XQ

j

){
f̂0

(
XQ

j

)
− f∗

(
XQ

j

)}∣∣∣∣∣∣ : φ ∈ F∗


 .

We now focus on a tight control of the final term of the bound (C.6) via the Ledoux-Talagrand contraction

principle (Lemma A.1). Towards this end, let us consider the functions αQ
j : XnQ → ([−2, 2] → R) for j ∈ [nQ]

defined as

αQ
j

(
xQ
1:nQ

)
(t) :=

{
f̂0

(
xQ
j

)
− f∗

(
xQ
j

)}
t, ∀t ∈ [−2, 2] , (C.7)

and simplify αQ
j := αQ

j

(
XQ

1:nQ

)
: [−2, 2] → R, where XQ

1:nQ
∼ QnQ

X . Then, one can find that αQ
j : [−2, 2] → R

is an (1 + Crf)-Lipschitz continuous function with αQ
j (0) = 0 for j ∈ [nQ]. By applying the Ledoux-Talagrand

contraction principle (Lemma A.1), while being conditioned on XQ
1:nQ

, we now have

Eσ1:nQ∼Unif({±1}nQ )

sup

∣∣∣∣∣∣ 1nQ

nQ∑
j=1

σjφ
(
XQ

j

){
f̂0

(
XQ

j

)
− f∗

(
XQ

j

)}∣∣∣∣∣∣ : φ ∈ F∗




= Eσ1:nQ∼Unif({±1}nQ )

sup

∣∣∣∣∣∣ 1nQ

nQ∑
j=1

σjα
Q
j (tj)

∣∣∣∣∣∣ : t1:nQ ∈ TQ
(
XQ

1:nQ

)


≤ 2 (1 + Crf)Eσ1:nQ∼Unif({±1}nQ )

sup

∣∣∣∣∣∣ 1nQ

nQ∑
j=1

σjtj

∣∣∣∣∣∣ : t1:nQ ∈ TQ
(
XQ

1:nQ

)
 ,

(C.8)

where TQ : XnQ → P (RnQ) is defined as

TQ
(
xQ
1:nQ

)
:=
{(

f
(
xQ
j

)
− f∗

(
xQ
j

)
: j ∈ [nQ]

)
: f ∈ F

}
⊆ RnQ . (C.9)
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Here, P (RnQ) refers to the power set of the nQ-dimensional Euclidean space RnQ . By taking two pieces (C.6)

and (C.8) collectively, we reach

E
XQ

1:nQ
∼Q

⊗nQ
X

[
sup

{
GQ,(1)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
≤ 4 (1 + Crf)E(

XQ
1:nQ

,σ1:nQ

)
∼Q

⊗nQ
X ⊗Unif({±1}nQ )

sup

∣∣∣∣∣∣ 1nQ

nQ∑
j=1

σjtj

∣∣∣∣∣∣ : t1:nQ ∈ TQ
(
XQ

1:nQ

)


= 4 (1 + Crf)EXQ
1:nQ

∼Q
⊗nQ
X

[
R̂nQ (F∗)

(
XQ

1:nQ

)]
= 4 (1 + Crf)RQ

nQ
(F∗) ,

which thus completes the proof of Lemma B.3.

C.4 Proof of Lemma B.4

Similar to the proof of Lemma B.2, we first introduce the function class
{
θ
(1)
Q (φ) : φ ∈ F∗ ∪ (−F∗)

}
, where

θ
(1)
Q (φ) : X → R is a function defined as

θ
(1)
Q (φ)(x) := φ(x)

{
f̂0(x)− f∗(x)

}
, ∀x ∈ X.

Then, it follows that

sup
{
GQ

nQ,(1)
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
= sup

 1

nQ

nQ∑
j=1

θ
(1)
Q (φ)

(
XQ

j

)
− EX∼QX

[
θ
(1)
Q (φ)(X)

]
: φ ∈ F∗ ∪ (−F∗)

 .
(C.10)

At this point, one can easily reveal based on Assumption 3 that

(i)
∣∣∣θ(1)Q (φ)(x)

∣∣∣ ≤ 2 (1 + Crf) for every (x, φ) ∈ X× {F∗ ∪ (−F∗)}.

(ii) VarX∼QX

[
θ
(1)
Q (φ)(X)

]
≤ EX∼QX

[{
θ
(1)
Q (φ)(X)

}2
]
≤ 4 (1 + Crf)

2
for all f ∈ F ∪ (−F).

The classical Talagrand’s concentration inequality (Lemma A.2) with parameters
(
B, v2

)
=
(
2 (1 + Crf) , 4 (1 + Crf)

2
)

together with the equation (C.10) tells us that with probability at least 1− δ,

sup
{
GQ,(1)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
− E

XQ
1:nQ

∼Q
⊗nQ
X

[
sup

{
GQ,(1)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
≤ 6 (1 + Crf)

nQ
log

(
1

δ

)
+ 2 (1 + Crf)

√
2 log

(
1
δ

)
nQ

(C.11)

+
2

√
nQ

√
2 (1 + Crf)EXQ

1:nQ
∼Q

⊗nQ
X

[
sup

{
GQ,(1)

nQ (φ)
(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
log

(
1

δ

)
(a)

≤ 6 (1 + Crf)

nQ
log

(
1

δ

)
+ 2 (1 + Crf)

√
2 log

(
1
δ

)
nQ

+ 4 (1 + Crf)

√
2RQX

nQ (F∗) log
(
1
δ

)
nQ

,

where the step (a) follows by Lemma B.3, and this finishes the proof of Lemma B.4.
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C.5 Proof of Lemma B.5

Similar to the proofs for Lemmas B.1 and B.3, we embark on the proof using the standard symmetrization

argument from empirical processes theory, which yields

E
XQ

1:nQ
∼Q

⊗nQ
X

[
sup

{
GQ,(2)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
= E

XQ
1:nQ

∼Q
⊗nQ
X

[
sup

{∣∣∣GQ,(2)
nQ

(φ)
(
XQ

1:nQ

)∣∣∣ : φ ∈ F∗
}]

≤ 2E(
XQ

1:nQ
,σ1:nQ

)
∼Q

⊗nQ
X ⊗Unif({±1}nQ )

sup

∣∣∣∣∣∣ 1nQ

nQ∑
j=1

σj

{
φ
(
XQ

j

)}2

∣∣∣∣∣∣ : φ ∈ F∗


 .

(C.12)

We now consider the function βQ : [−2, 2] → R defined to be

βQ(t) := t2, ∀t ∈ [−2, 2] .

It turns out that βQ : [−2, 2] → R is a 4-Lipschitz continuous function with βQ(0) = 0. Then, the Ledoux-

Talagrand contraction principle (Lemma A.1) tells us that while being conditioned on XQ
1:nQ

,

Eσ1:nQ∼Unif({±1}nQ )

sup

∣∣∣∣∣∣ 1nQ

nQ∑
j=1

σj

{
φ
(
XQ

j

)}2

∣∣∣∣∣∣ : φ ∈ F∗




= Eσ1:nQ∼Unif({±1}nQ )

sup

∣∣∣∣∣∣ 1nQ

nQ∑
j=1

σjβ
Q (tj)

∣∣∣∣∣∣ : t1:nQ ∈ TQ
(
XQ

1:nQ

)


≤ 8Eσ1:nQ∼Unif({±1}nQ )

sup

∣∣∣∣∣∣ 1nQ

nQ∑
j=1

σjtj

∣∣∣∣∣∣ : t1:nQ ∈ TQ
(
XQ

1:nQ

)
 ,

(C.13)

where the function TQ : XnQ → P (RnQ) is previously defined as (C.9). Putting two pieces (C.12) and (C.13)

together, we arrive at

E
XQ

1:nQ
∼Q

⊗nQ
X

[
sup

{
GQ,(2)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
≤ 16 · E(

XQ
1:nQ

,σ1:nQ

)
∼Q

⊗nQ
X ⊗Unif({±1}nQ )

sup

∣∣∣∣∣∣ 1nQ

nQ∑
j=1

σjtj

∣∣∣∣∣∣ : t1:nQ ∈ TQ
(
XQ

1:nQ

)


= 16 · E
XQ

1:nQ
∼Q

⊗nQ
X

[
R̂nQ (F∗)

(
XQ

1:nQ

)]
= 16 · RQ

nQ
(F∗) ,

as desired.

C.6 Proof of Lemma B.6

We begin the proof by introducing the function class
{
θ
(2)
Q (φ) : φ ∈ F∗ ∪ (−F∗)

}
, where θ

(2)
Q (φ) : X → R is

a function defined as

θ
(2)
Q (φ)(x) := {φ(x)}2 , ∀x ∈ X.
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Then, it is obvious that

sup
{
GQ

nQ,(2)
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
= sup

 1

nQ

nQ∑
j=1

θ
(2)
Q (φ)

(
XQ

j

)
− EX∼QX

[
θ
(2)
Q (φ)(X)

]
: φ ∈ F∗ ∪ (−F∗)

 .
(C.14)

Also, one can easily find based on Assumption 3 that

(i)
∣∣∣θ(2)Q (φ)(x)

∣∣∣ ≤ 4 for every (x, φ) ∈ X× {F∗ ∪ (−F∗)}.

(ii) VarX∼QX

[
θ
(2)
Q (φ)(X)

]
≤ EX∼QX

[{
θ
(2)
Q (φ)(X)

}2
]
≤ 16 for every f ∈ F ∪ (−F).

By virtue of the classical Talagrand’s concentration inequality (Lemma A.2) with
(
B, v2

)
= (4, 16) together

with the equation (C.14), we establish with probability at least 1− δ that

sup
{
GQ,(2)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}
− E

XQ
1:nQ

∼Q
⊗nQ
X

[
sup

{
GQ,(2)

nQ
(φ)

(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
≤ 12

nQ
log

(
1

δ

)
+ 4

√
2 log

(
1
δ

)
nQ

+
4

√
nQ

√
E
XQ

1:nQ
∼Q

⊗nQ
X

[
sup

{
GQ,(2)

nQ (φ)
(
XQ

1:nQ

)
: φ ∈ F∗ ∪ (−F∗)

}]
log

(
1

δ

)
(a)

≤ 12

nQ
log

(
1

δ

)
+ 4

√
2 log

(
1
δ

)
nQ

+ 16

√
RQX

nQ (F∗) log
(
1
δ

)
nQ

,

where the step (a) follows due to Lemma B.5. This ends the proof of Lemma B.6.

D Proof of auxiliary lemmas for the proof of Theorem B.1

D.1 Proof of Lemma B.7

Before delving into the proof of our main Lemma (Lemma B.7) that plays a key role in the proof for Theorem

B.1, we first establish key concentration properties of the gradient and the Hessian matrix of the DR empirical

risk (5.2) that holds under Assumptions 1–5, whose proofs are postponed to the final part of this subsection.

Lemma D.1 (Concentration property of the gradient). For any A ∈ Rd×d, there exists a universal constant

C(A) ∈ (0,+∞) that obeys the following concentration property of the gradient of the DR empirical risk (5.2)

with respect to the parameter vector θ: for any δ ∈ (0, 1], it holds that∥∥∥∥A{∇θR̂DR

(
OP

1:nP
,XQ

1:nQ

)
(θ∗)− E(

OP
1:nP

,XQ
1:nQ

)
∼P⊗nP⊗Q

nQ
X

[
∇θR̂DR

(
OP

1:nP
,XQ

1:nQ

)
(θ∗)

]}∥∥∥∥
2

≤ C(A)


√

VP(A) log
(
2d
δ

)
nP

+

√
VQ(A) log

(
2d
δ

)
nQ

+4 (1 + Cdr) (1 + Crf) b1︸ ︷︷ ︸
= B1 (defined in (B.32))

∥A∥op · log
(
2d

δ

)(
1

nP
+

1

nQ

)
(D.1)
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with probability higher than 1− δ under the data generating process
(
OP

1:nP
,XQ

1:nQ

)
∼ P⊗nP ⊗QnQ

X , where the

functions ΦP : X× R → Rd and ΦQ : X → Rd are defined as

ΦP(x, y) := 2ρ̂(x)
{
f̂0(x)− y

}
∇θf (x;θ∗) and

ΦQ(x) := 2
{
f (x;θ∗)− f̂0(x)

}
∇θf (x;θ∗) ,

(D.2)

respectively, and the quantities VP(A) ∈ (0,+∞) and VQ(A) ∈ (0,+∞) are defined by

VP(A) := E(X,Y )∼P

[∥∥A{ΦP(X,Y )− E(X,Y )∼P [ΦP(X,Y )]
}∥∥2

2

]
and

VQ(A) := EX∼QX

[
∥A {ΦQ(X)− EX∼QX

[ΦQ(X)]}∥22
]
,

(D.3)

respectively.

Lemma D.2 (Concentration property of the Hessian). The Hessian matrix of the DR empirical risk (5.2)

with respect to the parameter vector θ has the following concentration property: for any δ ∈ (0, 1], it holds

that ∥∥∥∥∇2
θR̂DR

(
OP

1:nP
,XQ

1:nQ

)
(θ∗)− E(

OP
1:nP

,XQ
1:nQ

)
∼P⊗nP⊗Q

nQ
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∇2

θR̂DR

(
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1:nP
,XQ
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)
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]∥∥∥∥
op

≤ 8
√
2 ·max

{
Cdr (1 + Crf) b2, b

2
1 + (1 + Crf) b2

}︸ ︷︷ ︸
= B2 (defined in (B.32))


√

log
(
4d
δ

)
nP

+

√
log
(
4d
δ

)
nQ

 (D.4)

with probability at least 1− δ under the data generating process
(
OP

1:nP
,XQ

1:nQ

)
∼ P⊗nP ⊗QnQ

X .

Lastly, it is straightforward to see that

∇θR̂DR

(
oP
1:nP

,xQ
1:nQ

)
(θ) =
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nP

nP∑
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ρ̂
(
xP
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(
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i

)
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}
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(
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i ;θ
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2
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{
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(
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j ;θ
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− f̂0

(
xQ
j

)}
∇θf

(
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)
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∇2
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(
oP
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(θ) =
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ρ̂
(
xP
i
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f̂0
(
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i
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(D.5)

+
2

nQ

nQ∑
j=1

[
∇θf

(
xQ
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){
∇θf

(
xQ
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f
(
xQ
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− f̂0

(
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(
xQ
j ;θ

)]
,

∇3
θR̂DR

(
oP
1:nP

,xQ
1:nQ

)
(θ) =

2

nP

nP∑
i=1

ρ̂
(
xP
i

){
f̂0
(
xP
i

)
− yPi

}
∇3

θf
(
xP
i ;θ
)

+
2

nQ

nQ∑
j=1

[
∇2

θf
(
xQ
j ;θ

)
⊗∇θf

(
xQ
j ;θ

)
+∇2

θf
(
xQ
j ;θ

)
⊗∇θf

(
xQ
j ;θ

)
+
{
f
(
xQ
j ;θ

)
− f̂0

(
xQ
j

)}
∇3

θf
(
xQ
j ;θ

)]
.

By making use of the observation (D.5), it follows that

E
[
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(
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θf (X;θ∗)
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(D.6)
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and while being conditioned on the event AP :=
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(D.7)

for every θ ∈ Θ, where the step (a) comes from Assumption 4 and the part (ii) of Assumption 5.

With these preliminary results in our hand, we are now ready to prove Lemma B.7. Hereafter, we focus

on the case where Θ = Rd for simplicity of presentation. Given any δ ∈ (0, 1) and any fixed matrix A ∈ Rd×d,

we define the events

E1 (δ;A) :=
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)
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and
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so that we have
(
P⊗nP ⊗Q⊗nQ

X

)
{E1 (δ;A)} ≥ 1− 2δ and

(
P⊗nP ⊗Q⊗nQ

X

)
{E2(δ)} ≥ 1− 4δ for any (A, δ) ∈

Rd×d×
(
0, 1

4

]
due to Lemma D.1 and D.2. For simplicity, we employ the notation R̂DR := R̂DR

(
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)
:

Rd → R for
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∼ P⊗nP ⊗Q⊗nQ

X as well as g := ∇θR̂DR (θ
∗)− E

[
∇θR̂DR (θ

∗)
]
throughout this

subsection. Owing to Assumption 5, it turns out for every θ ∈ Rd that while being on the event AP ∩ E2(δ),
where AP =

⋂nP
i=1
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∣∣ ≤ 1
}
,
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(c)
= 2EX∼PX

[
{ρ̂(X)− ρ∗(X)}

{
f̂0(X)− f (X;θ∗)

}
(θ − θ∗)

⊤ ∇θf (X;θ∗)
]
+ (θ − θ∗)

⊤
g

+ (θ − θ∗)
⊤ EX∼PX

[
{ρ̂(X)− ρ∗(X)}

{
f̂0(X)− f (X;θ∗)

}
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θf (X;θ∗)
]
(θ − θ∗)
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where the step (a) follows due to Taylor’s theorem together with the fact (D.7), the step (b) invokes Lemma

D.2, and the step (c) holds by the observation (D.6). Thus, by letting ∆(θ) := θ− θ∗ ∈ Rd, we obtain from

the inequality (D.10) that on the event AP ∩ E2(δ),

R̂DR(θ)− R̂DR (θ
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[
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(D.11)
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where z := −I−1
Q (θ∗)g ∈ Rd. By employing a similar argument, we reveal for any θ ∈ Rd that while being

conditioned on the event AP ∩ E2(δ), we have

R̂DR(θ)− R̂DR (θ
∗)
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where the step (d) invokes Taylor’s theorem as well as the observation (D.7), and the step (e) follows due to

Lemma D.2 and the fact (D.6).

Now, we leverage Lemma D.1 with A = I−1
Q (θ∗). While being conditioned on the event E1

(
δ; I−1
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)
,
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we have
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(D.13)

where the step (f) can be obtained by letting A = I−1
Q (θ∗) in the following facts: for any given fixed matrix

A ∈ Rd×d, it holds that

VP(A) := E(X,Y )∼P
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(D.14)

and

VQ(A) := EX∼QX
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[ΦQ(X)]}∥22
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(D.15)

where the steps (g) and (h) follow by Assumption 4 on the pilot black-box ML estimates ρ̂ : X → R+ and

f̂0 : X → R. Now, we let K := max
{
C
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Q (θ∗)

}
, C
{
I− 1

2

Q (θ∗)
}}

∈ (0,+∞). By noting that ∆ (θ∗ + z) =
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Q (θ∗)g, it follows from the inequality (D.11) that on the event AP ∩ E1

(
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)
∩ E2(δ),

R̂DR (θ
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∗)
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where the step (i) utilizes the bound (D.13) together with the following simple inequality:

(x+ y)
n ≤ 2n−1 (xn + yn) , ∀ (x, y, n) ∈ R+ × R+ × N.

On the other hand, for every θ ∈ Br(δ) (θ
∗), one can find by taking advantage of the lower bound (D.12)

that while being on the event AP ∩ E2(δ),
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Subtracting the bound (D.16) from (D.18) yields that on the event AP ∩ E1
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for every θ ∈ Br(δ) (θ
∗). At this point, we consider the d-dimensional ellipsoid
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Then, using the inequality (D.18), it follows for every θ ∈ Br(δ) (θ
∗) \ Γ(δ) that R̂DR(θ)− R̂DR (θ

∗ + z) > 0
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we obtain for any θ ∈ Γ(δ) that
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Thus, the triangle inequality implies on the event E1
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where the step (j) utilize the consequence (D.13) from Lemma D.1 with A = I−1
Q (θ∗). To guarantee that
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is the leading term, we only need it to dominate the remaining terms. In particular, whenver min {nP, nQ} ≥
κ · N1 log
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, then one can conclude from the bound (D.21) that on the event E1
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for every θ ∈ Γ(δ). To sum up, we have established the following conclusions so far:

(FACT A) On the event AP∩E1
(
δ; I−1

Q (θ∗)
)
∩E2(δ), we have R̂DR(θ)−R̂DR (θ

∗ + z) > 0 for every θ ∈ Br(δ) (θ
∗)\

Γ(δ).

(FACT B) On the event E1
(
δ; I−1

Q (θ∗)
)
, we have Γ(δ) ⊆ Br(δ) (θ

∗) if min {nP, nQ} ≥ κ · N1 log
(
d
δ

)
.

Lastly, it is time to put everything (FACT A and B) together to establish the part (i) of Lemma B.7.

Towards this end, let’s claim that being on the event AP ∩ E1
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the compactness of the d-dimensional closed ball Br(δ) (θ
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provided that min {nP, nQ} ≥ κ · N1 log
(
d
δ

)
.

In the sequel, we shall work with the high-probability event AP∩E1
(
δ; I−1

Q (θ∗)
)
∩E2(δ) in order to further

establish the part (ii) of Lemma B.7. Because θ̂DR ∈ Γ(δ) while being on the eventAP∩E1
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∩E2(δ)
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On the other hand, one can readily apply Lemma D.1 by letting A = I− 1
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if min {nP, nQ} ≥ κ ·N1 log
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Hence, on the event Λ(δ), the desired results (i) and (ii) both hold if min {nP, nQ} ≥ κ ·max {N1,N2} log
(
d
δ

)
.
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This completes the proof of Lemma B.7 since(
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where the step (n) arises from the union bound, and the step (o) holds true due to Lemma D.1 and D.2.
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where P̂ ∈ ∆(X× R) and Q̂X ∈ ∆(X) denote the empirical distributions for the nP labeled source sam-

ples OP
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, i.e., P̂ := 1
nP

∑nP
i=1 δ(XP

i ,Y
P
i )

and Q̂X := 1
nQ

∑nQ
j=1 δXQ

j
,

respectively, and the functions ΦP : X× R → Rd and ΦQ : X → Rd are defined as (D.2).
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with probability greater than 1− δ
2 under O1:nP ∼ P⊗nP , for every α ∈ [1,+∞). By taking α → +∞ in the
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with probability at least 1− δ
2 under X1:nQ ∼ Q⊗nQ
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where VQ(A) := EX∼QX

[
∥A {ΦQ(X)− EX∼QX

[ΦQ(X)]}∥22
]
.

Lastly, it is time to put all pieces together. Making use of the union bound together with two conclusions
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(D.31) and (D.34) and setting C(A) := max {CP(A), CQ(A)} ∈ (0,+∞), one has∥∥∥∥A{∇θR̂DR
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X . Then, one may express H by using the fact (B.42) that

H =
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where
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− 2EX∼QX

[
∇θf (X;θ∗) {∇θf (X;θ∗)}⊤ +

{
f (X;θ∗)− f̂0(X)

}
∇2

θf (X;θ∗)
]
,

for each (i, j) ∈ [nP]× [nQ]. At this moment, one can readily realize the following facts of the d× d random

matrices
{
UP

i : i ∈ [nP]
}
:

• The operator norm of UP
i can be bounded as∥∥UP
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for every i ∈ [nP], where the step (a) follows P-almost surely by Assumptions 3 and 4, and the step (b)

comes from Assumption 5.

• Using the upper bound (D.37), one can obtain
(
UP

i

)2 ⪯ σ2
PId for all i ∈ [nP] P-almost surely, where

σ2
P := 16C2

dr (1 + Crf)
2
b22.
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We can combine the above properties on the d×d random matrices
{
UP

i : i ∈ [nP]
}
together with the matrix

Hoeffding inequality (Theorem 1.3 in [74]) to reach
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for any t ∈ R+. Thus, it follows for any δ ∈ (0, 1] that∥∥∥∥∥ 1
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with probability at least 1− δ under the probability measure P⊗nP .

Likewise, one can make the following observations on the d× d random matrices
{
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}
:

• The operator norm of VQ
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for every j ∈ [nQ], where the step (c) holds due to Assumptions 3 and 4.

• Using the upper bound (D.40), one can obtain
(
VQ

j

)2
⪯ σ2

QId for every j ∈ [nQ], where

σ2
Q := 16

{
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.

Making use of the above findings regarding the d×d random matrices
{
VQ

j : j ∈ [nQ]
}
, the matrix Hoeffding

inequality then reveals that
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for every t ∈ R+. The inequality (D.41) tells us for any δ ∈ (0, 1] that∥∥∥∥∥∥ 1

nQ

nQ∑
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with probability at least 1 − δ under the probability measure Q⊗nQ
X . By combining two inequalities (D.39)

and (D.42) together with the union bound and replacing δ by δ
2 completes the proof of Lemma D.2.
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